
Trajectory Pattern Mining

Figures and charts are from some materials downloaded from the internet.

Mining Trajectory Pattern Data Mining 2014/10

Outline

• Spatio-temporal data types

• Mining trajectory patterns

Mining Trajectory Pattern Data Mining 2014/10

Spatio-temporal data typesS. Kisilevich et al. Spatio-Temporal Clustering: a Survey

ST events

Temporal extension

Sp
at

ia
l l

oc
at

io
n

X

Y

T

X

Y

TT

Geo-referenced
time series

fix
ed

lo
ca

ti
on

dy
na

m
ic

lo
ca

ti
on

single
snapshot

updated
snapshot time series

Spatial extension

X

Y

TT

Geo-referenced
variable

X
X

Y

T

X

Y

T

Moving points Trajectories(does not apply)

points
lines

areas

Fig. 1 Context for ST Clustering

origin of an epidemic) that grows in time (the enlarging section of the pyramid,
e.g. the progressive outbreak) till reaching its maximal extension (the base of
the pyramid). From another viewpoint, Wang et al (2006) proposed two spatio-
temporal clustering algorithms (ST-GRID and ST-DBSCAN) for analysis of se-
quences of seismic events. ST-GRID is based on partitioning of the spatial and
temporal dimensions into cells. ST-DBSCAN is an extension of the DBSCAN al-
gorithm to handle spatio-temporal clustering. The k-dist graph proposed in (Ester
et al, 1996) as a heuristic for determination of the input parameters was used in
both approaches. Hence, in the first step, the k-dist graph was created using spa-
tial and temporal dimensions. By means of the graph, the analyst could infer the
suitable thresholds for the spatial and temporal cell lengths. In the second step,
the inferred cell lengths are provided to ST-GRID algorithm as an input and the
dense clusters are extracted. ST-DBSCAN introduced the second parameter of
the neighborhood radius in addition to the spatial neighborhood radius e , namely
temporal neighborhood radius et . These two parameters were determined using
k-dist graph and provided to ST-DBSCAN as an input. Thus, point p is consid-
ered as core when the number of points in the neighborhood is greater or equal
to the threshold MinPts within spatial and temporal thresholds.

Geo-referenced variables. When it is possible to observe the evolution in time
of some phenomena in a fixed location, we have what is usually called a geo-
referenced variable, i.e., the time-changing value of some observed property. In

Technical Report, ISTI-CNR, Italy
Submitted to Data Mining and Knowledge Discovery Handbook, Springer

4

Mining Trajectory Pattern Data Mining 2014/10

Trajectory data

• Spatio-temporal Data
• Represented as a set of points, located in space and time
• T=(x1,y1, t1), …, (xn, yn, tn) => position in space at time ti was

(xi,yi)

Tid position (x,y) time (t)
 1 48.890018 2.246100 08:25
 1 48.890018 2.246100 08:26
...
 1 48.890020 2.246102 08:40
 1 48.888880 2.248208 08:41
 1 48.885732 2.255031 08:42
...
 1 48.858434 2.336105 09:04
 1 48.853611 2.349190 09:05
...
2

Mining Trajectory Pattern Data Mining 2014/10

Analyzing trajectory patterns

• Group together similar trajectories
• Analyze the each group

• Clustering

Mining Trajectory Pattern Data Mining 2014/10

Analyzing trajectory patterns

• Group together similar trajectories
• Analyze the each group

• Clustering

Mining Trajectory Pattern Data Mining 2014/10

Analyzing trajectory patterns

• Group together similar trajectories
• Analyze the each group

• Clustering

Mining Trajectory Pattern Data Mining 2014/10

Analyzing trajectory patterns

• Group together similar trajectories
• Analyze the each group

• Clustering

Mining Trajectory Pattern Data Mining 2014/10

Analyzing trajectory patterns

• The sub-trajectory that frequently appeared in the trajectories

• Frequent trajectory pattern mining

• Consider both place and time

Mining Trajectory Pattern Data Mining 2014/10

Analyzing trajectory patterns

• The sub-trajectory that frequently appeared in the trajectories

• Frequent trajectory pattern mining

• Consider both place and time

Trajectory Pattern Mining
Fosca Giannotti, etc. 2007

Mining Trajectory Pattern Data Mining 2014/10

trajectory vs sequence

• Purpose: find the frequent trajectory in the dataset.

Mining Trajectory Pattern Data Mining 2014/10

trajectory vs sequence

• Purpose: find the frequent trajectory in the dataset.

• Difference Compared with Traditional Sequence: TIME

Mining Trajectory Pattern Data Mining 2014/10

trajectory vs sequence

• Temporally Annotated Sequences(TAS)
• sequences with transition times between their elements

• Purpose: find the frequent trajectory in the dataset.
building on the work in [5], which is purely temporal. The
rest of this section briefly summarizes the key aspects of this
work.

2.2 Temporally Annotated Sequences
Temporally annotated sequences (TAS), introduced in [5],

are an extension of sequential patterns that enrich sequences
with information about the typical transition times between
their elements. TAS’s have the following form:

T = s0
α1−→ s1

α2−→ · · ·
αn−→ sn

also represented as a couple T = (S, A) of a sequence S =
⟨s0, . . . , sn⟩ with temporal annotations A = ⟨α1, . . . , αn⟩.

As an example, a TAS over the web pages visited along sev-

eral user navigation sessions can be the following: {’/’}
2

−→

{’/papers.html’}
90
−→ {’/kdd.html’}, that represents a se-

quence that starts from the root, then after 2 seconds con-
tinues with page ’papers.html’ and finally, after 90 seconds
ends with page ’kdd.html’.

Similarly to traditional sequential pattern mining, the no-
tion of frequency is based on the notion of support of a TAS ,
which in turn is defined as the number of input sequences
that contain the TAS. The key notion of containment can
be defined as follows:

Definition 1. (τ -containment (≼τ)) Given a time thresh-

old τ , a TAS T = s0
α1−→ · · ·

αn−→sn is τ -contained (or occurs)
in an input sequence I = ⟨(I0, t0), . . . , (Im, tm)⟩, denoted as
T ≼τ I , if and only if there exists a sequence of integers
0 ≤ i0 < · · · < in ≤ m such that:

1. ∀0≤k≤n. sk ⊆ Iik

2. ∀1≤k≤n. |αk − α′
k| ≤ τ

where ∀1≤k≤n. α′
k = tik

− tik−1
.

Essentially, a TAS T is τ -contained into an input sequence
I if there is an occurrence of T in I (condition 1) having
transition times similar to the annotations in T (condition
2). An example of τ -containment is the following:

{ b,d }, 3

{ a } { b } { c }4 9

{ f }, 10 { c }, 14
3 14−3=11

{ a }, 0

T :
I :

where the sequence in T occurs in I , and the transition times
of the occurrence differ at most of 2 time units. Therefore,
if τ ≥ 2 we have that T ≼τ I .

Now, frequent sequential patterns can be easily extended
to the notion of frequent TAS’s, which are simply defined as
TAS ’s that are τ -contained in at least smin input sequences,
smin being a minimum support threshold provided by the
user. However, introducing time in sequential patterns gives
rise to a novel issue: in general the number of frequent TAS’s
for a dataset is infinite. For instance, in the single-sequence
example given above, if τ = 2 and smin = 1, not only T is
frequent, but also any other variant of T having transition
times ⟨t1, t2⟩, where t1 ∈ [1, 5] and t2 ∈ [9, 13].

In [5] it was shown that discovering the frequent TAS’s
(S, A) for any given sequence S can be neatly formalized as
a density estimation problem (in particular, a kernel-based

estimation problem), and that the infinite set of frequent
TAS ’s can be represented in a finite and concise way.

Finally, an efficient prefix projection-based algorithm for
extracting frequent TAS ’s was provided, that interleaves pre-
fix extension steps and detection of frequent annotations for
each prefix, exploiting the monotonicity properties of den-
sity over the annotation space and the relations between
frequent sequences and frequent TAS ’s.

3. PROBLEM DEFINITION
The basic object of our investigation is the trajectory that

describes the movement of an object. To our purpose, a tra-
jectory of an object is a sequence of time-stamped locations,
representing the traces collected by some wireless/mobility
infrastructure, such as the GSM mobile phone network, or
GPS traces recorded by portable devices and transmitted to
a central server. The location, like a GSM cell or a lat-long
pair, is abstracted using ordinary Cartesian coordinates, as
formally stated by the following:

Definition 2. (ST-sequence) A spatio-temporal sequence
(ST-sequence) or trajectory is a sequence of triples S =
⟨(x0, y0, t0), . . . , (xk, yk, tk)⟩, where ti (i = 0..k) is a time-
stamp, ∀0≤i<k ti < ti+1 and (xi, yi) are points in R2.

The fundamental step in moving from sequences to spatio-
temporal sequences consists in replacing the discrete ele-
ments that form each sequence, usually taken from a prede-
fined alphabet, with spatial locations. Therefore, mining
spatio-temporal sequences will focus on the relations be-
tween (chronologically ordered) positions in space, whereas
standard sequence mining focuses on relations between some
given event types (taken from the above mentioned alpha-
bet).

The key task in sequence mining consists in counting the
occurrences of a pattern, i.e., those segments of the input
data that match a candidate pattern. Matching the elements
of a sequence in standard sequential patterns requires sim-
ple equality tests between symbols; instead, in our context it
requires matching spatial locations, on the base of some no-
tion of approximated match and error tolerance. That can
be formally expressed in a simple and general way by means
of a neighborhood function N : R2 → P(R2), which assigns
to each pair (x, y) a set N(x, y) of neighboring points.

Definition 3. (Spatial containment, ≼N)Given a sequence
of spatial points S = ⟨(x0, y0), . . . , (xk, yk)⟩, a spatio-tempor-
al sequence T = ⟨(x′

0, y
′
0, t

′
0), . . . , (x

′
n, y′

n, t′n)⟩ and a neigh-
borhood function N : R2 → P(R2), we say that S is con-
tained in T (S ≼N T , or simply S ≼ T , when N is clear from
context) if and only if there exists a sequence of integers 0 ≤
i0 < · · · < ik ≤ n such that: ∀0≤j≤k. (xj , yj) ∈ N(x′

ij
, y′

ij
).

The inclusion of temporal information in a sequential pat-
tern can be obtained by making the patterns include tem-
poral constraints between consecutive elements of the se-
quence, following the same spirit of temporally annotated
sequences (TAS) [5]:

Definition 4. (T-pattern) A Trajectory pattern, called T-
pattern, is a pair (S, A), where S = ⟨(x0, y0), . . . , (xk, yk)⟩
is a sequence of points in R2, and A = ⟨α1, . . . , αk⟩ ∈ Rk

+ is
the (temporal) annotation of the sequence. T-patterns will

also be represented as (S,A) = (x0, y0)
α1−→ (x1, y1)

α2−→

· · ·
αk−→ (xk, yk).

• represented as a couple T = (S, A) of a sequence S = ⟨s0,...,sn⟩ with
temporal annotations A = ⟨α1,...,αn⟩.

• Difference Compared with Traditional Sequence: TIME

Mining Trajectory Pattern Data Mining 2014/10

Frequent sequences in TAS vs Frequent sequence in sequence

• contain of Sequence
• α⊆ β, if there exist integers

1≤j1<j2<…<jn≤m such that
a1⊆bj1, a2 ⊆ bj2,…, an ⊆ bjn .

• Example:
• β =<a(abc)(ac)d(cf)>
• α1=<aa(ac)d(c)> yes
• α2=<(ac)(ac)d(cf)> yes
• α3=<ac> yes
• α4=<df(cf)> no

• contain of TAS

building on the work in [5], which is purely temporal. The
rest of this section briefly summarizes the key aspects of this
work.

2.2 Temporally Annotated Sequences
Temporally annotated sequences (TAS), introduced in [5],

are an extension of sequential patterns that enrich sequences
with information about the typical transition times between
their elements. TAS’s have the following form:

T = s0
α1−→ s1

α2−→ · · ·
αn−→ sn

also represented as a couple T = (S, A) of a sequence S =
⟨s0, . . . , sn⟩ with temporal annotations A = ⟨α1, . . . , αn⟩.

As an example, a TAS over the web pages visited along sev-

eral user navigation sessions can be the following: {’/’}
2

−→

{’/papers.html’}
90
−→ {’/kdd.html’}, that represents a se-

quence that starts from the root, then after 2 seconds con-
tinues with page ’papers.html’ and finally, after 90 seconds
ends with page ’kdd.html’.

Similarly to traditional sequential pattern mining, the no-
tion of frequency is based on the notion of support of a TAS ,
which in turn is defined as the number of input sequences
that contain the TAS. The key notion of containment can
be defined as follows:

Definition 1. (τ -containment (≼τ)) Given a time thresh-

old τ , a TAS T = s0
α1−→ · · ·

αn−→sn is τ -contained (or occurs)
in an input sequence I = ⟨(I0, t0), . . . , (Im, tm)⟩, denoted as
T ≼τ I , if and only if there exists a sequence of integers
0 ≤ i0 < · · · < in ≤ m such that:

1. ∀0≤k≤n. sk ⊆ Iik

2. ∀1≤k≤n. |αk − α′
k| ≤ τ

where ∀1≤k≤n. α′
k = tik

− tik−1
.

Essentially, a TAS T is τ -contained into an input sequence
I if there is an occurrence of T in I (condition 1) having
transition times similar to the annotations in T (condition
2). An example of τ -containment is the following:

{ b,d }, 3

{ a } { b } { c }4 9

{ f }, 10 { c }, 14
3 14−3=11

{ a }, 0

T :
I :

where the sequence in T occurs in I , and the transition times
of the occurrence differ at most of 2 time units. Therefore,
if τ ≥ 2 we have that T ≼τ I .

Now, frequent sequential patterns can be easily extended
to the notion of frequent TAS’s, which are simply defined as
TAS ’s that are τ -contained in at least smin input sequences,
smin being a minimum support threshold provided by the
user. However, introducing time in sequential patterns gives
rise to a novel issue: in general the number of frequent TAS’s
for a dataset is infinite. For instance, in the single-sequence
example given above, if τ = 2 and smin = 1, not only T is
frequent, but also any other variant of T having transition
times ⟨t1, t2⟩, where t1 ∈ [1, 5] and t2 ∈ [9, 13].

In [5] it was shown that discovering the frequent TAS’s
(S, A) for any given sequence S can be neatly formalized as
a density estimation problem (in particular, a kernel-based

estimation problem), and that the infinite set of frequent
TAS ’s can be represented in a finite and concise way.

Finally, an efficient prefix projection-based algorithm for
extracting frequent TAS ’s was provided, that interleaves pre-
fix extension steps and detection of frequent annotations for
each prefix, exploiting the monotonicity properties of den-
sity over the annotation space and the relations between
frequent sequences and frequent TAS ’s.

3. PROBLEM DEFINITION
The basic object of our investigation is the trajectory that

describes the movement of an object. To our purpose, a tra-
jectory of an object is a sequence of time-stamped locations,
representing the traces collected by some wireless/mobility
infrastructure, such as the GSM mobile phone network, or
GPS traces recorded by portable devices and transmitted to
a central server. The location, like a GSM cell or a lat-long
pair, is abstracted using ordinary Cartesian coordinates, as
formally stated by the following:

Definition 2. (ST-sequence) A spatio-temporal sequence
(ST-sequence) or trajectory is a sequence of triples S =
⟨(x0, y0, t0), . . . , (xk, yk, tk)⟩, where ti (i = 0..k) is a time-
stamp, ∀0≤i<k ti < ti+1 and (xi, yi) are points in R2.

The fundamental step in moving from sequences to spatio-
temporal sequences consists in replacing the discrete ele-
ments that form each sequence, usually taken from a prede-
fined alphabet, with spatial locations. Therefore, mining
spatio-temporal sequences will focus on the relations be-
tween (chronologically ordered) positions in space, whereas
standard sequence mining focuses on relations between some
given event types (taken from the above mentioned alpha-
bet).

The key task in sequence mining consists in counting the
occurrences of a pattern, i.e., those segments of the input
data that match a candidate pattern. Matching the elements
of a sequence in standard sequential patterns requires sim-
ple equality tests between symbols; instead, in our context it
requires matching spatial locations, on the base of some no-
tion of approximated match and error tolerance. That can
be formally expressed in a simple and general way by means
of a neighborhood function N : R2 → P(R2), which assigns
to each pair (x, y) a set N(x, y) of neighboring points.

Definition 3. (Spatial containment, ≼N)Given a sequence
of spatial points S = ⟨(x0, y0), . . . , (xk, yk)⟩, a spatio-tempor-
al sequence T = ⟨(x′

0, y
′
0, t

′
0), . . . , (x

′
n, y′

n, t′n)⟩ and a neigh-
borhood function N : R2 → P(R2), we say that S is con-
tained in T (S ≼N T , or simply S ≼ T , when N is clear from
context) if and only if there exists a sequence of integers 0 ≤
i0 < · · · < ik ≤ n such that: ∀0≤j≤k. (xj , yj) ∈ N(x′

ij
, y′

ij
).

The inclusion of temporal information in a sequential pat-
tern can be obtained by making the patterns include tem-
poral constraints between consecutive elements of the se-
quence, following the same spirit of temporally annotated
sequences (TAS) [5]:

Definition 4. (T-pattern) A Trajectory pattern, called T-
pattern, is a pair (S, A), where S = ⟨(x0, y0), . . . , (xk, yk)⟩
is a sequence of points in R2, and A = ⟨α1, . . . , αk⟩ ∈ Rk

+ is
the (temporal) annotation of the sequence. T-patterns will

also be represented as (S,A) = (x0, y0)
α1−→ (x1, y1)

α2−→

· · ·
αk−→ (xk, yk).

building on the work in [5], which is purely temporal. The
rest of this section briefly summarizes the key aspects of this
work.

2.2 Temporally Annotated Sequences
Temporally annotated sequences (TAS), introduced in [5],

are an extension of sequential patterns that enrich sequences
with information about the typical transition times between
their elements. TAS’s have the following form:

T = s0
α1−→ s1

α2−→ · · ·
αn−→ sn

also represented as a couple T = (S, A) of a sequence S =
⟨s0, . . . , sn⟩ with temporal annotations A = ⟨α1, . . . , αn⟩.

As an example, a TAS over the web pages visited along sev-

eral user navigation sessions can be the following: {’/’}
2

−→

{’/papers.html’}
90
−→ {’/kdd.html’}, that represents a se-

quence that starts from the root, then after 2 seconds con-
tinues with page ’papers.html’ and finally, after 90 seconds
ends with page ’kdd.html’.

Similarly to traditional sequential pattern mining, the no-
tion of frequency is based on the notion of support of a TAS ,
which in turn is defined as the number of input sequences
that contain the TAS. The key notion of containment can
be defined as follows:

Definition 1. (τ -containment (≼τ)) Given a time thresh-

old τ , a TAS T = s0
α1−→ · · ·

αn−→sn is τ -contained (or occurs)
in an input sequence I = ⟨(I0, t0), . . . , (Im, tm)⟩, denoted as
T ≼τ I , if and only if there exists a sequence of integers
0 ≤ i0 < · · · < in ≤ m such that:

1. ∀0≤k≤n. sk ⊆ Iik

2. ∀1≤k≤n. |αk − α′
k| ≤ τ

where ∀1≤k≤n. α′
k = tik

− tik−1
.

Essentially, a TAS T is τ -contained into an input sequence
I if there is an occurrence of T in I (condition 1) having
transition times similar to the annotations in T (condition
2). An example of τ -containment is the following:

{ b,d }, 3

{ a } { b } { c }4 9

{ f }, 10 { c }, 14
3 14−3=11

{ a }, 0

T :
I :

where the sequence in T occurs in I , and the transition times
of the occurrence differ at most of 2 time units. Therefore,
if τ ≥ 2 we have that T ≼τ I .

Now, frequent sequential patterns can be easily extended
to the notion of frequent TAS’s, which are simply defined as
TAS ’s that are τ -contained in at least smin input sequences,
smin being a minimum support threshold provided by the
user. However, introducing time in sequential patterns gives
rise to a novel issue: in general the number of frequent TAS’s
for a dataset is infinite. For instance, in the single-sequence
example given above, if τ = 2 and smin = 1, not only T is
frequent, but also any other variant of T having transition
times ⟨t1, t2⟩, where t1 ∈ [1, 5] and t2 ∈ [9, 13].

In [5] it was shown that discovering the frequent TAS’s
(S, A) for any given sequence S can be neatly formalized as
a density estimation problem (in particular, a kernel-based

estimation problem), and that the infinite set of frequent
TAS ’s can be represented in a finite and concise way.

Finally, an efficient prefix projection-based algorithm for
extracting frequent TAS ’s was provided, that interleaves pre-
fix extension steps and detection of frequent annotations for
each prefix, exploiting the monotonicity properties of den-
sity over the annotation space and the relations between
frequent sequences and frequent TAS ’s.

3. PROBLEM DEFINITION
The basic object of our investigation is the trajectory that

describes the movement of an object. To our purpose, a tra-
jectory of an object is a sequence of time-stamped locations,
representing the traces collected by some wireless/mobility
infrastructure, such as the GSM mobile phone network, or
GPS traces recorded by portable devices and transmitted to
a central server. The location, like a GSM cell or a lat-long
pair, is abstracted using ordinary Cartesian coordinates, as
formally stated by the following:

Definition 2. (ST-sequence) A spatio-temporal sequence
(ST-sequence) or trajectory is a sequence of triples S =
⟨(x0, y0, t0), . . . , (xk, yk, tk)⟩, where ti (i = 0..k) is a time-
stamp, ∀0≤i<k ti < ti+1 and (xi, yi) are points in R2.

The fundamental step in moving from sequences to spatio-
temporal sequences consists in replacing the discrete ele-
ments that form each sequence, usually taken from a prede-
fined alphabet, with spatial locations. Therefore, mining
spatio-temporal sequences will focus on the relations be-
tween (chronologically ordered) positions in space, whereas
standard sequence mining focuses on relations between some
given event types (taken from the above mentioned alpha-
bet).

The key task in sequence mining consists in counting the
occurrences of a pattern, i.e., those segments of the input
data that match a candidate pattern. Matching the elements
of a sequence in standard sequential patterns requires sim-
ple equality tests between symbols; instead, in our context it
requires matching spatial locations, on the base of some no-
tion of approximated match and error tolerance. That can
be formally expressed in a simple and general way by means
of a neighborhood function N : R2 → P(R2), which assigns
to each pair (x, y) a set N(x, y) of neighboring points.

Definition 3. (Spatial containment, ≼N)Given a sequence
of spatial points S = ⟨(x0, y0), . . . , (xk, yk)⟩, a spatio-tempor-
al sequence T = ⟨(x′

0, y
′
0, t

′
0), . . . , (x

′
n, y′

n, t′n)⟩ and a neigh-
borhood function N : R2 → P(R2), we say that S is con-
tained in T (S ≼N T , or simply S ≼ T , when N is clear from
context) if and only if there exists a sequence of integers 0 ≤
i0 < · · · < ik ≤ n such that: ∀0≤j≤k. (xj , yj) ∈ N(x′

ij
, y′

ij
).

The inclusion of temporal information in a sequential pat-
tern can be obtained by making the patterns include tem-
poral constraints between consecutive elements of the se-
quence, following the same spirit of temporally annotated
sequences (TAS) [5]:

Definition 4. (T-pattern) A Trajectory pattern, called T-
pattern, is a pair (S, A), where S = ⟨(x0, y0), . . . , (xk, yk)⟩
is a sequence of points in R2, and A = ⟨α1, . . . , αk⟩ ∈ Rk

+ is
the (temporal) annotation of the sequence. T-patterns will

also be represented as (S,A) = (x0, y0)
α1−→ (x1, y1)

α2−→

· · ·
αk−→ (xk, yk).

• Example:

Mining Trajectory Pattern Data Mining 2014/10

Frequent sequences in TAS vs Frequent sequence in sequence

• contain of Sequence
• α⊆ β, if there exist integers

1≤j1<j2<…<jn≤m such that
a1⊆bj1, a2 ⊆ bj2,…, an ⊆ bjn .

• Example:
• β =<a(abc)(ac)d(cf)>
• α1=<aa(ac)d(c)> yes
• α2=<(ac)(ac)d(cf)> yes
• α3=<ac> yes
• α4=<df(cf)> no

• contain of TAS

building on the work in [5], which is purely temporal. The
rest of this section briefly summarizes the key aspects of this
work.

2.2 Temporally Annotated Sequences
Temporally annotated sequences (TAS), introduced in [5],

are an extension of sequential patterns that enrich sequences
with information about the typical transition times between
their elements. TAS’s have the following form:

T = s0
α1−→ s1

α2−→ · · ·
αn−→ sn

also represented as a couple T = (S, A) of a sequence S =
⟨s0, . . . , sn⟩ with temporal annotations A = ⟨α1, . . . , αn⟩.

As an example, a TAS over the web pages visited along sev-

eral user navigation sessions can be the following: {’/’}
2

−→

{’/papers.html’}
90
−→ {’/kdd.html’}, that represents a se-

quence that starts from the root, then after 2 seconds con-
tinues with page ’papers.html’ and finally, after 90 seconds
ends with page ’kdd.html’.

Similarly to traditional sequential pattern mining, the no-
tion of frequency is based on the notion of support of a TAS ,
which in turn is defined as the number of input sequences
that contain the TAS. The key notion of containment can
be defined as follows:

Definition 1. (τ -containment (≼τ)) Given a time thresh-

old τ , a TAS T = s0
α1−→ · · ·

αn−→sn is τ -contained (or occurs)
in an input sequence I = ⟨(I0, t0), . . . , (Im, tm)⟩, denoted as
T ≼τ I , if and only if there exists a sequence of integers
0 ≤ i0 < · · · < in ≤ m such that:

1. ∀0≤k≤n. sk ⊆ Iik

2. ∀1≤k≤n. |αk − α′
k| ≤ τ

where ∀1≤k≤n. α′
k = tik

− tik−1
.

Essentially, a TAS T is τ -contained into an input sequence
I if there is an occurrence of T in I (condition 1) having
transition times similar to the annotations in T (condition
2). An example of τ -containment is the following:

{ b,d }, 3

{ a } { b } { c }4 9

{ f }, 10 { c }, 14
3 14−3=11

{ a }, 0

T :
I :

where the sequence in T occurs in I , and the transition times
of the occurrence differ at most of 2 time units. Therefore,
if τ ≥ 2 we have that T ≼τ I .

Now, frequent sequential patterns can be easily extended
to the notion of frequent TAS’s, which are simply defined as
TAS ’s that are τ -contained in at least smin input sequences,
smin being a minimum support threshold provided by the
user. However, introducing time in sequential patterns gives
rise to a novel issue: in general the number of frequent TAS’s
for a dataset is infinite. For instance, in the single-sequence
example given above, if τ = 2 and smin = 1, not only T is
frequent, but also any other variant of T having transition
times ⟨t1, t2⟩, where t1 ∈ [1, 5] and t2 ∈ [9, 13].

In [5] it was shown that discovering the frequent TAS’s
(S, A) for any given sequence S can be neatly formalized as
a density estimation problem (in particular, a kernel-based

estimation problem), and that the infinite set of frequent
TAS ’s can be represented in a finite and concise way.

Finally, an efficient prefix projection-based algorithm for
extracting frequent TAS ’s was provided, that interleaves pre-
fix extension steps and detection of frequent annotations for
each prefix, exploiting the monotonicity properties of den-
sity over the annotation space and the relations between
frequent sequences and frequent TAS ’s.

3. PROBLEM DEFINITION
The basic object of our investigation is the trajectory that

describes the movement of an object. To our purpose, a tra-
jectory of an object is a sequence of time-stamped locations,
representing the traces collected by some wireless/mobility
infrastructure, such as the GSM mobile phone network, or
GPS traces recorded by portable devices and transmitted to
a central server. The location, like a GSM cell or a lat-long
pair, is abstracted using ordinary Cartesian coordinates, as
formally stated by the following:

Definition 2. (ST-sequence) A spatio-temporal sequence
(ST-sequence) or trajectory is a sequence of triples S =
⟨(x0, y0, t0), . . . , (xk, yk, tk)⟩, where ti (i = 0..k) is a time-
stamp, ∀0≤i<k ti < ti+1 and (xi, yi) are points in R2.

The fundamental step in moving from sequences to spatio-
temporal sequences consists in replacing the discrete ele-
ments that form each sequence, usually taken from a prede-
fined alphabet, with spatial locations. Therefore, mining
spatio-temporal sequences will focus on the relations be-
tween (chronologically ordered) positions in space, whereas
standard sequence mining focuses on relations between some
given event types (taken from the above mentioned alpha-
bet).

The key task in sequence mining consists in counting the
occurrences of a pattern, i.e., those segments of the input
data that match a candidate pattern. Matching the elements
of a sequence in standard sequential patterns requires sim-
ple equality tests between symbols; instead, in our context it
requires matching spatial locations, on the base of some no-
tion of approximated match and error tolerance. That can
be formally expressed in a simple and general way by means
of a neighborhood function N : R2 → P(R2), which assigns
to each pair (x, y) a set N(x, y) of neighboring points.

Definition 3. (Spatial containment, ≼N)Given a sequence
of spatial points S = ⟨(x0, y0), . . . , (xk, yk)⟩, a spatio-tempor-
al sequence T = ⟨(x′

0, y
′
0, t

′
0), . . . , (x

′
n, y′

n, t′n)⟩ and a neigh-
borhood function N : R2 → P(R2), we say that S is con-
tained in T (S ≼N T , or simply S ≼ T , when N is clear from
context) if and only if there exists a sequence of integers 0 ≤
i0 < · · · < ik ≤ n such that: ∀0≤j≤k. (xj , yj) ∈ N(x′

ij
, y′

ij
).

The inclusion of temporal information in a sequential pat-
tern can be obtained by making the patterns include tem-
poral constraints between consecutive elements of the se-
quence, following the same spirit of temporally annotated
sequences (TAS) [5]:

Definition 4. (T-pattern) A Trajectory pattern, called T-
pattern, is a pair (S, A), where S = ⟨(x0, y0), . . . , (xk, yk)⟩
is a sequence of points in R2, and A = ⟨α1, . . . , αk⟩ ∈ Rk

+ is
the (temporal) annotation of the sequence. T-patterns will

also be represented as (S,A) = (x0, y0)
α1−→ (x1, y1)

α2−→

· · ·
αk−→ (xk, yk).

building on the work in [5], which is purely temporal. The
rest of this section briefly summarizes the key aspects of this
work.

2.2 Temporally Annotated Sequences
Temporally annotated sequences (TAS), introduced in [5],

are an extension of sequential patterns that enrich sequences
with information about the typical transition times between
their elements. TAS’s have the following form:

T = s0
α1−→ s1

α2−→ · · ·
αn−→ sn

also represented as a couple T = (S, A) of a sequence S =
⟨s0, . . . , sn⟩ with temporal annotations A = ⟨α1, . . . , αn⟩.

As an example, a TAS over the web pages visited along sev-

eral user navigation sessions can be the following: {’/’}
2

−→

{’/papers.html’}
90
−→ {’/kdd.html’}, that represents a se-

quence that starts from the root, then after 2 seconds con-
tinues with page ’papers.html’ and finally, after 90 seconds
ends with page ’kdd.html’.

Similarly to traditional sequential pattern mining, the no-
tion of frequency is based on the notion of support of a TAS ,
which in turn is defined as the number of input sequences
that contain the TAS. The key notion of containment can
be defined as follows:

Definition 1. (τ -containment (≼τ)) Given a time thresh-

old τ , a TAS T = s0
α1−→ · · ·

αn−→sn is τ -contained (or occurs)
in an input sequence I = ⟨(I0, t0), . . . , (Im, tm)⟩, denoted as
T ≼τ I , if and only if there exists a sequence of integers
0 ≤ i0 < · · · < in ≤ m such that:

1. ∀0≤k≤n. sk ⊆ Iik

2. ∀1≤k≤n. |αk − α′
k| ≤ τ

where ∀1≤k≤n. α′
k = tik

− tik−1
.

Essentially, a TAS T is τ -contained into an input sequence
I if there is an occurrence of T in I (condition 1) having
transition times similar to the annotations in T (condition
2). An example of τ -containment is the following:

{ b,d }, 3

{ a } { b } { c }4 9

{ f }, 10 { c }, 14
3 14−3=11

{ a }, 0

T :
I :

where the sequence in T occurs in I , and the transition times
of the occurrence differ at most of 2 time units. Therefore,
if τ ≥ 2 we have that T ≼τ I .

Now, frequent sequential patterns can be easily extended
to the notion of frequent TAS’s, which are simply defined as
TAS ’s that are τ -contained in at least smin input sequences,
smin being a minimum support threshold provided by the
user. However, introducing time in sequential patterns gives
rise to a novel issue: in general the number of frequent TAS’s
for a dataset is infinite. For instance, in the single-sequence
example given above, if τ = 2 and smin = 1, not only T is
frequent, but also any other variant of T having transition
times ⟨t1, t2⟩, where t1 ∈ [1, 5] and t2 ∈ [9, 13].

In [5] it was shown that discovering the frequent TAS’s
(S, A) for any given sequence S can be neatly formalized as
a density estimation problem (in particular, a kernel-based

estimation problem), and that the infinite set of frequent
TAS ’s can be represented in a finite and concise way.

Finally, an efficient prefix projection-based algorithm for
extracting frequent TAS ’s was provided, that interleaves pre-
fix extension steps and detection of frequent annotations for
each prefix, exploiting the monotonicity properties of den-
sity over the annotation space and the relations between
frequent sequences and frequent TAS ’s.

3. PROBLEM DEFINITION
The basic object of our investigation is the trajectory that

describes the movement of an object. To our purpose, a tra-
jectory of an object is a sequence of time-stamped locations,
representing the traces collected by some wireless/mobility
infrastructure, such as the GSM mobile phone network, or
GPS traces recorded by portable devices and transmitted to
a central server. The location, like a GSM cell or a lat-long
pair, is abstracted using ordinary Cartesian coordinates, as
formally stated by the following:

Definition 2. (ST-sequence) A spatio-temporal sequence
(ST-sequence) or trajectory is a sequence of triples S =
⟨(x0, y0, t0), . . . , (xk, yk, tk)⟩, where ti (i = 0..k) is a time-
stamp, ∀0≤i<k ti < ti+1 and (xi, yi) are points in R2.

The fundamental step in moving from sequences to spatio-
temporal sequences consists in replacing the discrete ele-
ments that form each sequence, usually taken from a prede-
fined alphabet, with spatial locations. Therefore, mining
spatio-temporal sequences will focus on the relations be-
tween (chronologically ordered) positions in space, whereas
standard sequence mining focuses on relations between some
given event types (taken from the above mentioned alpha-
bet).

The key task in sequence mining consists in counting the
occurrences of a pattern, i.e., those segments of the input
data that match a candidate pattern. Matching the elements
of a sequence in standard sequential patterns requires sim-
ple equality tests between symbols; instead, in our context it
requires matching spatial locations, on the base of some no-
tion of approximated match and error tolerance. That can
be formally expressed in a simple and general way by means
of a neighborhood function N : R2 → P(R2), which assigns
to each pair (x, y) a set N(x, y) of neighboring points.

Definition 3. (Spatial containment, ≼N)Given a sequence
of spatial points S = ⟨(x0, y0), . . . , (xk, yk)⟩, a spatio-tempor-
al sequence T = ⟨(x′

0, y
′
0, t

′
0), . . . , (x

′
n, y′

n, t′n)⟩ and a neigh-
borhood function N : R2 → P(R2), we say that S is con-
tained in T (S ≼N T , or simply S ≼ T , when N is clear from
context) if and only if there exists a sequence of integers 0 ≤
i0 < · · · < ik ≤ n such that: ∀0≤j≤k. (xj , yj) ∈ N(x′

ij
, y′

ij
).

The inclusion of temporal information in a sequential pat-
tern can be obtained by making the patterns include tem-
poral constraints between consecutive elements of the se-
quence, following the same spirit of temporally annotated
sequences (TAS) [5]:

Definition 4. (T-pattern) A Trajectory pattern, called T-
pattern, is a pair (S, A), where S = ⟨(x0, y0), . . . , (xk, yk)⟩
is a sequence of points in R2, and A = ⟨α1, . . . , αk⟩ ∈ Rk

+ is
the (temporal) annotation of the sequence. T-patterns will

also be represented as (S,A) = (x0, y0)
α1−→ (x1, y1)

α2−→

· · ·
αk−→ (xk, yk).

• Example:

Generalize the concept of contain with neighbourhood

Mining Trajectory Pattern Data Mining 2014/10

Problem statement

building on the work in [5], which is purely temporal. The
rest of this section briefly summarizes the key aspects of this
work.

2.2 Temporally Annotated Sequences
Temporally annotated sequences (TAS), introduced in [5],

are an extension of sequential patterns that enrich sequences
with information about the typical transition times between
their elements. TAS’s have the following form:

T = s0
α1−→ s1

α2−→ · · ·
αn−→ sn

also represented as a couple T = (S, A) of a sequence S =
⟨s0, . . . , sn⟩ with temporal annotations A = ⟨α1, . . . , αn⟩.

As an example, a TAS over the web pages visited along sev-

eral user navigation sessions can be the following: {’/’}
2

−→

{’/papers.html’}
90
−→ {’/kdd.html’}, that represents a se-

quence that starts from the root, then after 2 seconds con-
tinues with page ’papers.html’ and finally, after 90 seconds
ends with page ’kdd.html’.

Similarly to traditional sequential pattern mining, the no-
tion of frequency is based on the notion of support of a TAS ,
which in turn is defined as the number of input sequences
that contain the TAS. The key notion of containment can
be defined as follows:

Definition 1. (τ -containment (≼τ)) Given a time thresh-

old τ , a TAS T = s0
α1−→ · · ·

αn−→sn is τ -contained (or occurs)
in an input sequence I = ⟨(I0, t0), . . . , (Im, tm)⟩, denoted as
T ≼τ I , if and only if there exists a sequence of integers
0 ≤ i0 < · · · < in ≤ m such that:

1. ∀0≤k≤n. sk ⊆ Iik

2. ∀1≤k≤n. |αk − α′
k| ≤ τ

where ∀1≤k≤n. α′
k = tik

− tik−1
.

Essentially, a TAS T is τ -contained into an input sequence
I if there is an occurrence of T in I (condition 1) having
transition times similar to the annotations in T (condition
2). An example of τ -containment is the following:

{ b,d }, 3

{ a } { b } { c }4 9

{ f }, 10 { c }, 14
3 14−3=11

{ a }, 0

T :
I :

where the sequence in T occurs in I , and the transition times
of the occurrence differ at most of 2 time units. Therefore,
if τ ≥ 2 we have that T ≼τ I .

Now, frequent sequential patterns can be easily extended
to the notion of frequent TAS’s, which are simply defined as
TAS ’s that are τ -contained in at least smin input sequences,
smin being a minimum support threshold provided by the
user. However, introducing time in sequential patterns gives
rise to a novel issue: in general the number of frequent TAS’s
for a dataset is infinite. For instance, in the single-sequence
example given above, if τ = 2 and smin = 1, not only T is
frequent, but also any other variant of T having transition
times ⟨t1, t2⟩, where t1 ∈ [1, 5] and t2 ∈ [9, 13].

In [5] it was shown that discovering the frequent TAS’s
(S, A) for any given sequence S can be neatly formalized as
a density estimation problem (in particular, a kernel-based

estimation problem), and that the infinite set of frequent
TAS ’s can be represented in a finite and concise way.

Finally, an efficient prefix projection-based algorithm for
extracting frequent TAS ’s was provided, that interleaves pre-
fix extension steps and detection of frequent annotations for
each prefix, exploiting the monotonicity properties of den-
sity over the annotation space and the relations between
frequent sequences and frequent TAS ’s.

3. PROBLEM DEFINITION
The basic object of our investigation is the trajectory that

describes the movement of an object. To our purpose, a tra-
jectory of an object is a sequence of time-stamped locations,
representing the traces collected by some wireless/mobility
infrastructure, such as the GSM mobile phone network, or
GPS traces recorded by portable devices and transmitted to
a central server. The location, like a GSM cell or a lat-long
pair, is abstracted using ordinary Cartesian coordinates, as
formally stated by the following:

Definition 2. (ST-sequence) A spatio-temporal sequence
(ST-sequence) or trajectory is a sequence of triples S =
⟨(x0, y0, t0), . . . , (xk, yk, tk)⟩, where ti (i = 0..k) is a time-
stamp, ∀0≤i<k ti < ti+1 and (xi, yi) are points in R2.

The fundamental step in moving from sequences to spatio-
temporal sequences consists in replacing the discrete ele-
ments that form each sequence, usually taken from a prede-
fined alphabet, with spatial locations. Therefore, mining
spatio-temporal sequences will focus on the relations be-
tween (chronologically ordered) positions in space, whereas
standard sequence mining focuses on relations between some
given event types (taken from the above mentioned alpha-
bet).

The key task in sequence mining consists in counting the
occurrences of a pattern, i.e., those segments of the input
data that match a candidate pattern. Matching the elements
of a sequence in standard sequential patterns requires sim-
ple equality tests between symbols; instead, in our context it
requires matching spatial locations, on the base of some no-
tion of approximated match and error tolerance. That can
be formally expressed in a simple and general way by means
of a neighborhood function N : R2 → P(R2), which assigns
to each pair (x, y) a set N(x, y) of neighboring points.

Definition 3. (Spatial containment, ≼N)Given a sequence
of spatial points S = ⟨(x0, y0), . . . , (xk, yk)⟩, a spatio-tempor-
al sequence T = ⟨(x′

0, y
′
0, t

′
0), . . . , (x

′
n, y′

n, t′n)⟩ and a neigh-
borhood function N : R2 → P(R2), we say that S is con-
tained in T (S ≼N T , or simply S ≼ T , when N is clear from
context) if and only if there exists a sequence of integers 0 ≤
i0 < · · · < ik ≤ n such that: ∀0≤j≤k. (xj , yj) ∈ N(x′

ij
, y′

ij
).

The inclusion of temporal information in a sequential pat-
tern can be obtained by making the patterns include tem-
poral constraints between consecutive elements of the se-
quence, following the same spirit of temporally annotated
sequences (TAS) [5]:

Definition 4. (T-pattern) A Trajectory pattern, called T-
pattern, is a pair (S, A), where S = ⟨(x0, y0), . . . , (xk, yk)⟩
is a sequence of points in R2, and A = ⟨α1, . . . , αk⟩ ∈ Rk

+ is
the (temporal) annotation of the sequence. T-patterns will

also be represented as (S,A) = (x0, y0)
α1−→ (x1, y1)

α2−→

· · ·
αk−→ (xk, yk).

1

sequenceinput

τ

τ

α

(x1,y1)

(x0,y0) N(x0,y0)

X

Y

Time

N(x1,y1)

Figure 1: Matching T-pattern (x0, y0)
α1−→ (x1, y1)

against an input ST-sequence.

An occurrence of a T-pattern takes place when both spa-
tial positions and transition times of the pattern approxi-
matively correspond to those found in an input sequence:

Definition 5. (Spatio-temporal containment, ≼N,τ)
Given a spatio-temporal sequence T , time tolerance τ , a
neighborhood function N : R2 → P(R2) and a T-pattern

(S, A) = (x0, y0)
α1−→ (x1, y1)

α2−→ · · ·
αk−→ (xk, yk), we say

that (S,A) is contained in T ((S, A) ≼N,τ T , or simply
(S, A) ≼ T , when clear from context) if and only if there ex-
ists a subsequence T ′ of T , T ′ = ⟨(x′

0, y
′
0, t

′
0), . . . , (x

′
k, y′

k, t′k)⟩
such that:

1. S ≼N T ′, and

2. ∀1≤j≤k. |αj − α′
j | ≤ τ

where α′
j = t′j − t′j−1.

Intuitively, a T-pattern is contained in a trajectory if the
latter contains an approximated instance of the former, the
approximation being associated with both the spatial and
the temporal dimensions. We notice that comparisons are
not performed on absolute times, as spatio-temporal con-
tainment is based on the transition times between two con-
secutive elements in the sequence, expressed by the αi and
α′

i terms of condition 2 in Definition 5.
As an example, Figure 1 shows how the spatial and tempo-

ral constraints essentially form a spatio-temporal neighbor-
hood around each point of the reference trajectory. More-
over, we notice that in our model the neighborhood N()
of a point depends only on the spatial coordinates of the
points, and therefore neighborhoods are time-independent.
In the graphical example, this is reflected by the shape of
the spatio-temporal neighborhood, which is obtained as ex-
trusion of a spatial neighborhood along the time dimension.

From containment, a natural definition of support and fre-
quent pattern can be assigned, as well as a general definition
of the trajectory pattern mining problem.

Definition 6. (Trajectory pattern mining) Given a data-
base of input trajectories D, a time tolerance τ , a neighbor-
hood function N() and a minimum support threshold smin ,
the trajectory pattern mining problem consists of finding all
frequent T-patterns, i.e., all T-patterns (S, A) such that

supportD,τ,N(S, A) ≥ smin

where the support supportD,τ,N of a T-pattern (S, A) is the
number of input trajectories T ∈ D such that (S, A) ≼N,τ T .

Notice that the neighborhood function is a parameter of
the definition of containment, and different neighborhood
functions yield different variants of frequent T-patterns. In
particular, some choices lead to very complex mining prob-
lems, while others yield more tractable variants. Section 4
will introduce an approach of the latter kind, while Section
6.1 discusses a complex example of the former kind and is
followed by a trade-off solution described in Section 6.2.

4. REGIONS-OF-INTEREST
The general problem defined is Section 3 flexibly allows

to follow several different approaches, each corresponding
to a different choice of the neighborhood function N(x, y).
Choosing a neighborhood function essentially means imple-
menting some specific notion of spatial similarity that will
be used in the spatio-temporal containment test. In this
section, in particular, the neighborhood function is used to
model Regions-of-Interest (RoI), that represent a natural
way to partition the space into meaningful areas and, cor-
respondingly, to associate spatial points with region labels.
A straightforward solution is to reduce the problem of T-
pattern mining to the problem of mining simple TAS ’s, for
which an efficient solution was already provided. The details
of such a reduction process are provided in Section 4.1.

Integrating RoI and trajectories
Here we assume to receive as input a set R of disjoint spa-
tial regions – each representing a place that is relevant for
our analysis – which will be used to define a neighborhood
function in the following way:

NR(x, y) =

ȷ

A if A ∈ R ∧ (x, y) ∈ A
∅ otherwise

(1)

The neighborhood of a spatial point is the whole region
it falls in, i.e., two points are considered similar iff they fall
in the same region. All points that are not covered by the
regions in R have an empty neighborhood, meaning that
they are not similar to any point (including themselves).
The result is that points disregarded by R will be virtually
deleted from trajectories and spatio-temporal patterns.

Static neighborhoods NR() greatly simplify the problem
of mining T-patterns. Indeed, it results that we can re-
place ST-sequences with corresponding sequences of regions,
thus treating the spatial information only in a preprocessing
step2:

Theorem 1. A T-pattern (S, A) is contained in a ST-
sequence T = ⟨(x0, y0, t0), . . . , (xn, yn, tn)⟩ w.r.t. a RoI neigh-
borhood NR() iff the TAS (S′, A) is contained in sequence T ′,
where S′ (resp. T ′) is obtained by mapping each spatial point
(x, y) of S (resp. T) to NR(x, y), removing empty regions.

The regions associated with each point, i.e., NR(x, y), are
essentially used as labels representing events of the form “the
trajectory is in region NR(x, y) at time t”. Thus, the meth-
ods developed for extracting frequent TAS ’s can be directly
applied to the translated input sequences, and each pattern
2Due to space limitations, proofs of theorems are not given
here, and are available in [6].

Mining Trajectory Pattern Data Mining 2014/10

Illustration of patio-temporal containment

Mining Trajectory Pattern Data Mining 2014/10

Mining trajectory patterns with different N()

• different approaches correspond to a different choice of the
neighborhood function N(x,y).

• RoI: (1) known RoI; (2) unknown RoI.

• Generalized N(x,y)

Mining Trajectory Pattern Data Mining 2014/10

Mining trajectory patterns with known RoI

“Efficient mining of sequences with temporal annotations. In Proc. SIAM Conference on Data Mining, pages 346–357. SIAM, 2006.”

• Add the information of time into PrefixSpan — mining TAS

Mining Trajectory Pattern Data Mining 2014/10

PrefixSpan

“J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001.”

• PrefixSpan: mining frequent sequences based on prefix-projection

• The fundamental idea is that any pattern starting with a can be
obtained by analyzing only D|a (projection of the initial dataset
D on a), which in general is much smaller than D.

• e.g. α =<a(abc)(ac)d(cf)>
• β =<a(abc)a>

• A subsequence α’ of sequence α is
called a projection of α w.r.t. β prefix
iff:(1) α’ has prefix β; (2) There exist
no proper super-sequence α’’ of α’
such that α’’ is a subsequence of α and  
also has prefix β.

• Sequence β is called a prefix of α iff:
• (1)bi= ai for i ≤ m-1; (2) bm ⊆ am.

• e.g. α =<a(abc)(ac)d(cf)>
• β =<(bc)a>
• α’ =<(bc)(ac)d(cf)>

Mining Trajectory Pattern Data Mining 2014/10

PrefixSpan — examples

“J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001.”

id Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

• Step one: Find length1 sequential patterns

• Step two: Divide search space

• Step three: Find subsets of sequential patterns

Mining Trajectory Pattern Data Mining 2014/10

PrefixSpan — examples

“J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001.”

<a> <c> <d> <e> <f> <g>

4 4 4 3 3 3 1

id Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

• Step one: Find length1 sequential patterns

• Step two: Divide search space

• Step three: Find subsets of sequential patterns

Mining Trajectory Pattern Data Mining 2014/10

PrefixSpan — examples

“J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001.”

<a> <c> <d> <e> <f> <g>

4 4 4 3 3 3 1

id Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<a><c><d><e><f>

• Step one: Find length1 sequential patterns

• Step two: Divide search space

• Step three: Find subsets of sequential patterns

Mining Trajectory Pattern Data Mining 2014/10

PrefixSpan — examples

“J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001.”

Prefix

<a> <c> <d> <e> <f> <g>

4 4 4 3 3 3 1

id Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<a><c><d><e><f>

• Step one: Find length1 sequential patterns

• Step two: Divide search space

• Step three: Find subsets of sequential patterns

Mining Trajectory Pattern Data Mining 2014/10

PrefixSpan — examples

“J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001.”

Prefix

 <a>
 <(abc)(ac)d(cf)>
 <(_d)c(bc)(ae)>

 <(_b)(df)cb>
 <(_f)cbc>

<a> <c> <d> <e> <f> <g>

4 4 4 3 3 3 1

id Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<a><c><d><e><f>

• Step one: Find length1 sequential patterns

• Step two: Divide search space

• Step three: Find subsets of sequential patterns

Mining Trajectory Pattern Data Mining 2014/10

PrefixSpan — examples

“J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001.”

Prefix

 <a>
 <(abc)(ac)d(cf)>
 <(_d)c(bc)(ae)>

 <(_b)(df)cb>
 <(_f)cbc>

<(_c)(ac)d(cf)>

<(_c)(ae)>
<(df)cb>

<c>

<a> <c> <d> <e> <f> <g>

4 4 4 3 3 3 1

id Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<a><c><d><e><f>

• Step one: Find length1 sequential patterns

• Step two: Divide search space

• Step three: Find subsets of sequential patterns

Mining Trajectory Pattern Data Mining 2014/10

PrefixSpan — examples

“J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001.”

Prefix

 <a>
 <(abc)(ac)d(cf)>
 <(_d)c(bc)(ae)>

 <(_b)(df)cb>
 <(_f)cbc>

<(_c)(ac)d(cf)>

<(_c)(ae)>
<(df)cb>

<c>

 <c>
<(ac)d(cf)>
<(bc)(ae)>

<bc>

<a> <c> <d> <e> <f> <g>

4 4 4 3 3 3 1

id Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<a><c><d><e><f>

• Step one: Find length1 sequential patterns

• Step two: Divide search space

• Step three: Find subsets of sequential patterns

Mining Trajectory Pattern Data Mining 2014/10

PrefixSpan — examples

“J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001.”

Prefix

 <a>
 <(abc)(ac)d(cf)>
 <(_d)c(bc)(ae)>

 <(_b)(df)cb>
 <(_f)cbc>

<(_c)(ac)d(cf)>

<(_c)(ae)>
<(df)cb>

<c>

 <d>

<(cf)>
<c(bc)(ae)>

<(_f)cb>

 <c>
<(ac)d(cf)>
<(bc)(ae)>

<bc>

<a> <c> <d> <e> <f> <g>

4 4 4 3 3 3 1

id Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<a><c><d><e><f>

• Step one: Find length1 sequential patterns

• Step two: Divide search space

• Step three: Find subsets of sequential patterns

Mining Trajectory Pattern Data Mining 2014/10

PrefixSpan — examples

“J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001.”

Prefix

 <a>
 <(abc)(ac)d(cf)>
 <(_d)c(bc)(ae)>

 <(_b)(df)cb>
 <(_f)cbc>

<(_c)(ac)d(cf)>

<(_c)(ae)>
<(df)cb>

<c>

 <e>

<(_f)(ab)(df)cb>
<(af)cbc>

 <d>

<(cf)>
<c(bc)(ae)>

<(_f)cb>

 <c>
<(ac)d(cf)>
<(bc)(ae)>

<bc>

<a> <c> <d> <e> <f> <g>

4 4 4 3 3 3 1

id Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<a><c><d><e><f>

• Step one: Find length1 sequential patterns

• Step two: Divide search space

• Step three: Find subsets of sequential patterns

Mining Trajectory Pattern Data Mining 2014/10

PrefixSpan — examples

“J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001.”

Prefix

 <a>
 <(abc)(ac)d(cf)>
 <(_d)c(bc)(ae)>

 <(_b)(df)cb>
 <(_f)cbc>

<(_c)(ac)d(cf)>

<(_c)(ae)>
<(df)cb>

<c>

 <f>
<(ab)(df)cb>

<cbc>

 <e>

<(_f)(ab)(df)cb>
<(af)cbc>

 <d>

<(cf)>
<c(bc)(ae)>

<(_f)cb>

 <c>
<(ac)d(cf)>
<(bc)(ae)>

<bc>

<a> <c> <d> <e> <f> <g>

4 4 4 3 3 3 1

id Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<a><c><d><e><f>

• Step one: Find length1 sequential patterns

• Step two: Divide search space

• Step three: Find subsets of sequential patterns

Mining Trajectory Pattern Data Mining 2014/10

PrefixSpan — examples

“J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001.”

Prefix

 <a>
 <(abc)(ac)d(cf)>
 <(_d)c(bc)(ae)>

 <(_b)(df)cb>
 <(_f)cbc>

<(_c)(ac)d(cf)>

<(_c)(ae)>
<(df)cb>

<c>

 <f>
<(ab)(df)cb>

<cbc>

 <e>

<(_f)(ab)(df)cb>
<(af)cbc>

 <d>

<(cf)>
<c(bc)(ae)>

<(_f)cb>

 <c>
<(ac)d(cf)>
<(bc)(ae)>

<bc>

<a> <c> <d> <e> <f> <g>

4 4 4 3 3 3 1

id Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<a><c><d><e><f>

• Step one: Find length1 sequential patterns

• Step two: Divide search space

• Step three: Find subsets of sequential patterns

Mining Trajectory Pattern Data Mining 2014/10

PrefixSpan — examples

“J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001.”

Prefix

 <a>
 <(abc)(ac)d(cf)>
 <(_d)c(bc)(ae)>

 <(_b)(df)cb>
 <(_f)cbc>

<(_c)(ac)d(cf)>

<(_c)(ae)>
<(df)cb>

<c>

 <f>
<(ab)(df)cb>

<cbc>

 <e>

<(_f)(ab)(df)cb>
<(af)cbc>

 <d>

<(cf)>
<c(bc)(ae)>

<(_f)cb>

 <c>
<(ac)d(cf)>
<(bc)(ae)>

<bc>

<a> <c> <d> <e> <f> <g>

4 4 4 3 3 3 1

id Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<a><c><d><e><f>

• Step one: Find length1 sequential patterns

• Step two: Divide search space

• Step three: Find subsets of sequential patterns
 <dc>

<(bc)(ae)>

 <db>
<(_c)(ae)>

Mining Trajectory Pattern Data Mining 2014/10

PrefixSpan — examples

“J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001.”

Prefix

 <a>
 <(abc)(ac)d(cf)>
 <(_d)c(bc)(ae)>

 <(_b)(df)cb>
 <(_f)cbc>

<(_c)(ac)d(cf)>

<(_c)(ae)>
<(df)cb>

<c>

 <f>
<(ab)(df)cb>

<cbc>

 <e>

<(_f)(ab)(df)cb>
<(af)cbc>

 <d>

<(cf)>
<c(bc)(ae)>

<(_f)cb>

 <c>
<(ac)d(cf)>
<(bc)(ae)>

<bc>

<a> <c> <d> <e> <f> <g>

4 4 4 3 3 3 1

id Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<a><c><d><e><f>

• Step one: Find length1 sequential patterns

• Step two: Divide search space

• Step three: Find subsets of sequential patterns
 <dc>

<(bc)(ae)>

 <db>
<(_c)(ae)>

Mining Trajectory Pattern Data Mining 2014/10

PrefixSpan — examples

“J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001.”

Prefix

 <a>
 <(abc)(ac)d(cf)>
 <(_d)c(bc)(ae)>

 <(_b)(df)cb>
 <(_f)cbc>

<(_c)(ac)d(cf)>

<(_c)(ae)>
<(df)cb>

<c>

 <f>
<(ab)(df)cb>

<cbc>

 <e>

<(_f)(ab)(df)cb>
<(af)cbc>

 <d>

<(cf)>
<c(bc)(ae)>

<(_f)cb>

 <c>
<(ac)d(cf)>
<(bc)(ae)>

<bc>

<a> <c> <d> <e> <f> <g>

4 4 4 3 3 3 1

id Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

<a><c><d><e><f>

• Step one: Find length1 sequential patterns

• Step two: Divide search space

• Step three: Find subsets of sequential patterns
 <dc>

<(bc)(ae)>

 <db>
<(_c)(ae)>

 <dcb>
<>

Mining Trajectory Pattern Data Mining 2014/10

Mining trajectory patterns with known RoI

“Efficient mining of sequences with temporal annotations. In Proc. SIAM Conference on Data Mining, pages 346–357. SIAM, 2006.”

• Add time into PrefixSpan — mining TAS

• Expand the prefix with the limitation of the time dimension

Mining Trajectory Pattern Data Mining 2014/10

Mining trajectory patterns with known RoI

“Efficient mining of sequences with temporal annotations. In Proc. SIAM Conference on Data Mining, pages 346–357. SIAM, 2006.”

• Add time into PrefixSpan — mining TAS

• Expand the prefix with the limitation of the time dimension

Definition 3. (ø-support, Frequent TAS) Given a
set D of TAS’s, a time threshold ø and a minimum
support threshold s

min

2 [0, 1], we define the ø -support
of a TAS T as

ø°supp(T) =
|{T § 2 D | T π

ø

T §}|
|D|

and say that T is frequent in D if ø°supp(T) ∏ s
min

.

It should be noted that a frequent sequence s̄
may not correspond to any frequent TAS T = (s̄, Ǣ):
indeed, its occurrences in the database could have highly
dispersed annotations, thus not allowing any single
annotation Ǣ 2 R

n

+ to be close (i.e., similar) enough
to a su±cient number of them. That essentially means
s̄ has no typical transition times.

Now, introducing time in sequential patterns gives
rise to a novel issue: intuitively, for any frequent
TAS T = (s̄, Ǣ), we can usually find a vector ≤̄ of
small, strictly positive values such that T 0 = (s̄, Ǣ + ≤̄)
is frequent as well, since they are approximatively
contained in the same TAS’s in the dataset, and then
have very similar ø -support. Since any vector with
smaller values than ≤̄ (e.g., a fraction ≤̄/n of it) would
yield the same eÆect, we have that, in general, the raw
set of all frequent TAS is highly redundant (and also not
finite, mathematically speaking), due to the existence of
several very similar — and then practically equivalent
— frequent annotations for the same sequence.

Example 3. Given the following toy database of
TAS’s:

a
1°!b

2.1°!c a
1.1°!b

1.9°!c

a
1.2°!b

2°!c a
0.9°!b

1.9°!c

if ø = 0.2 and s
min

= 0.8 we see that T = a
1°! b

2°! c
is a frequent TAS, since ø°supp(T)=1. However, we see
that the same holds also for a

1.1°! b
2°! c and a

1°!
b

2.1°! c. In general, we can see that any a
Æ1°! b

Æ2°! c is
frequent whenever Æ1 2 [1, 1.1] and Æ2 2 [1.9, 2.1].

A similar, more complex example is graphically de-
picted in Figure 2, where all frequent TAS’s for the se-
quence s̄ = a ! b ! c over a toy dataset are plotted:
the dataset is assumed to contain 10 transactions and
each one contains exactly one occurrence of s̄. The an-
notations of each occurrence are plotted as stars and
called dataset points, adopting a terminology that will
be introduced and better explained in later sections.
Then, the darkest (blue) regions correspond to the in-
finitely many annotations Ǣ that make (s̄, Ǣ) a frequent
TAS for s

min

= 0.3 and ø = 0.1; analogously, the
lighter (green) shaded regions (plus the darkest/blue
ones, implicitly) represent frequent TAS’s for s

min

= 0.2,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1 1.2

An
no

ta
tio

n
α 2

Annotation α1

Frequent annotations for pattern a → b → c

smin=0.1
smin=0.2
smin=0.3

Dataset points

Figure 2: Sample dataset points and frequent annota-
tions for a

Æ1°!b
Æ2°!c

and outlined regions correspond to frequent TAS’s for
s
min

= 0.1. Obviously enough, smaller s
min

values gen-
erate larger sets of frequent TAS’s and then correspond
to larger regions in Figure 2.

A natural step towards a useful definition of fre-
quent TAS’s, then, is the summarization of similar anno-
tations (relative to the same sequence) through a single,
concise representation.

The problem of discovering the frequent TAS’s for
some fixed sequence can be formalized within a density
estimation setting in the following way. Each sequence
s̄ = hs0, . . . , sn

i can be associated with the space R

n

+

of all its possible annotations, and so each TAS T =
(s̄, Ǣ§) (Ǣ§ 2 R

n

+) exactly contained in some TAS of our
database corresponds to a point in such space, that we
can call a dataset point. Then, each annotation Ǣ 2 R

n

+

can be associated with a notion of frequency freq(Ǣ)
that counts the dataset points close to Ǣ, more precisely
defined as the number of dataset points that fall within
a n-dimensional hyper-cube centered on Ǣ and having
edge 2ø . Figure 2 depicts a simple example with 10
dataset points (the stars) over R

2
+ and ø = 0.1 (notice

the squares of side length 2ø around each dataset point):
dark regions represent annotations having frequency
equal to 3; lighter regions correspond to frequency 2;
finally, empty outlined regions contain annotations with
frequency 1, while all the remaining points have null
frequency.

We introduce a formal definition and notation for
the two notions mentioned above:

Definition 4. (Dataset points, Annot. freq.)

Given a set D of TAS’s, an integer n ∏ 1, a sequence s̄
of n + 1 elements and a threshold ø , we define the set
of dataset points, denoted as An

D,s̄

, as follows:

An

D,s̄

= {Ǣ§ 2 R

n

+ | (s̄, Ǣ§) π0 D}

and the frequency of any annotation Ǣ 2 R

n

+, denoted

349

Mining Trajectory Pattern Data Mining 2014/10

Mining trajectory patterns with unknown RoI

• Construct RoI

• Use the previous algorithm

Mining Trajectory Pattern Data Mining 2014/10

Construct RoI (1)

• Split space into n x m grid with small cells

• Increment cells where trajectory passes

• Neighborhood Function NR() determines which surrounding cells

• Regression - increment continuously along trajectory

Mining Trajectory Pattern Data Mining 2014/10

Construct RoI (2)

• Iteratively consider each dense cell

• Expands in all four directions

• Select expansion that maximizes density

• Repeat until expansion would decrease below density threshold

Mining Trajectory Pattern Data Mining 2014/10

Mining trajectory patterns with R(N)

• In principle, we need to search all-sequences of each trajectory to see
if it contains a T-pattern in order to decide if it is a frequent pattern

• A T- pattern matches an input ST-sequence T when it falls in the
neighborhood of any of its subsequences, which is equivalent to say
that it falls in the union of the neighborhoods of all possible
subsequences of T, that for convenience we will call the neighborhood
of T

• frequent T-patterns are those that fall in the neighborhood of several
input ST- sequences

• a density-estimation problem where we look for dense points in a
space that represents T-patterns by means of tuples of points plus
corresponding (n − 1)-ples of transition times

Mining Trajectory Pattern Data Mining 2014/10

Mining trajectory patterns with R(N)

• In principle, we need to search all-sequences of each trajectory to see
if it contains a T-pattern in order to decide if it is a frequent pattern

• A T- pattern matches an input ST-sequence T when it falls in the
neighborhood of any of its subsequences, which is equivalent to say
that it falls in the union of the neighborhoods of all possible
subsequences of T, that for convenience we will call the neighborhood
of T

• frequent T-patterns are those that fall in the neighborhood of several
input ST- sequences

• a density-estimation problem where we look for dense points in a
space that represents T-patterns by means of tuples of points plus
corresponding (n − 1)-ples of transition times

However, the dimension grows rapidly

Mining Trajectory Pattern Data Mining 2014/10

step-wise heuristic approach

• step by step: transition
times can be searched
in a separate step, after
finding the interesting
spatial points

(a) input trajectories (b) density distribution (c) dense cells and extracted RoI

Figure 4: Example of RoI extraction

From the discussion given above, we can easily deduce
that in a general setting the T-pattern mining problem be-
comes intractable even for small pattern lengths. That moti-
vates the development of simpler heuristic approaches, that
try to extract the same kind of information contained in
pure T-patterns but with some simplifying approximation.

6.2 A step-wise heuristic
The main issue in the general T-pattern mining problem

is that we need to consider density for space and transition
times in parallel, making it a high-dimensional problem.

Here a trade-off solution is provided, that approximates
the more general instantiations of the T-pattern problem,
by adopting a step-wise approach in building T-patterns,
and approximating sets of similar T-patterns by means of a
RoI-based representation.

6.2.1 Principles of the method
We start by observing that the set P0 of T-patterns of

length 1 for a dataset of trajectories T0 consists of all points
(x0, y0) over R2 that are dense w.r.t. the given neighbor-
hood function, i.e., all points that are touched or that fall
close to a sufficient number of the input trajectories.

In order to discover all patterns P1 of length 2, i.e., of the

form (x0, y0)
∆t1−→ (x1, y1), the general definition requires to

examine the occurrences of each input trajectory in the rep-
resentation space R5 looking for dense points, as discussed
in Section 6.1. However, that will yield patterns whose first
points, (x0, y0), are a subset of those found in P0, and, more
generally, any frequent T-pattern of length n + 1 is the ex-
tension of some frequent T-pattern of length n, as stated by
the following property.

Theorem 3 (Anti-Monotonicity). Let T be an in-
put trajectory, and let τ and the spatial neighborhood func-
tion N() be the parameters for the T-pattern mining prob-
lem. Then:

(x0, y0)
∆t1−→ . . .

∆tn+1
−→ (xn+1, yn+1) ≼N,τ T (2)

⇒ (x0, y0)
∆t1−→ . . .

∆tn−→ (xn, yn) ≼N,τ T (3)

⇒ (x0, y0)−→ . . .−→(xn, yn) ≼N T (4)

This property implies that the support of a T-pattern is
less than or equal to the support of any its prefixes, and thus

allows us to adopt a level-wise approach by mining step-by-
step patterns of increasing length. Moreover, it also states
that, in a similar way, transition times can be searched in a
separate step, after finding the interesting spatial points.

A critical aspect of this approach is the fact that at each
step we have in general an infinite number of possible points
to consider, e.g., the patterns in P0 correspond to all the
points that fall in any dense region of R2 w.r.t. the neigh-
borhood function. To deal with this problem, we introduce
an approximation of the basic method, where points are not
treated separately, but at each step are clustered together by
following the approach described in Section 4.2, to form ba-
sic regions that are treated as an indivisible entity. As in the
case of static RoI, the set of regions derived this way can be
used to translate trajectories to sequences composed of such
regions, which will be used to extend the actual pattern.

Notice that each occurrence of a region in the translated
sequence is associated with a time stamp, which is the time
stamp of the corresponding original point in the trajectory,
or, in case the trajectory was reconstructed through regres-
sion, the entry time of the trajectory in the region.

6.2.2 Implementation of the method
Exploiting the monotonicity property provided by Theo-

rem 3, we can safely search for any frequent pattern pn+1 =

(x0, y0)
∆t1−→ . . .

∆tn+1
−→ (xn+1, yn+1) by analyzing only the tra-

jectories that are already known to contain the subpattern

pn = (x0, y0)
∆t1−→ . . .

∆tn−→ (xn, yn). Moreover, only a seg-
ment of such trajectories really needs to be searched, since
we only need to find continuations of the pattern pn, and no
point occurring before the end time of pn can be appended
to pn to obtain pn+1. Therefore, any point occurring before
such end time can be removed from the trajectory. That
essentially means that we can follow a projection-based ap-
proach, as adopted by PrefixSpan [9] for sequential patterns
and by MiSTA [5] for frequent TAS’s.

The main difference from existing methods for mining se-
quential patterns or episodes is that our input data and the
projections obtained at each step will contain trajectories,
rather than sequences of events or itemsets. Then, at each
step we dynamically derive the interesting regions from the
trajectory segments of the actual projection, use such RoI
to translate the whole projection to a set of sequences of

Mining Trajectory Pattern Data Mining 2014/10

step-wise heuristic approach

• step by step: transition
times can be searched
in a separate step, after
finding the interesting
spatial points

(a) input trajectories (b) density distribution (c) dense cells and extracted RoI

Figure 4: Example of RoI extraction

From the discussion given above, we can easily deduce
that in a general setting the T-pattern mining problem be-
comes intractable even for small pattern lengths. That moti-
vates the development of simpler heuristic approaches, that
try to extract the same kind of information contained in
pure T-patterns but with some simplifying approximation.

6.2 A step-wise heuristic
The main issue in the general T-pattern mining problem

is that we need to consider density for space and transition
times in parallel, making it a high-dimensional problem.

Here a trade-off solution is provided, that approximates
the more general instantiations of the T-pattern problem,
by adopting a step-wise approach in building T-patterns,
and approximating sets of similar T-patterns by means of a
RoI-based representation.

6.2.1 Principles of the method
We start by observing that the set P0 of T-patterns of

length 1 for a dataset of trajectories T0 consists of all points
(x0, y0) over R2 that are dense w.r.t. the given neighbor-
hood function, i.e., all points that are touched or that fall
close to a sufficient number of the input trajectories.

In order to discover all patterns P1 of length 2, i.e., of the

form (x0, y0)
∆t1−→ (x1, y1), the general definition requires to

examine the occurrences of each input trajectory in the rep-
resentation space R5 looking for dense points, as discussed
in Section 6.1. However, that will yield patterns whose first
points, (x0, y0), are a subset of those found in P0, and, more
generally, any frequent T-pattern of length n + 1 is the ex-
tension of some frequent T-pattern of length n, as stated by
the following property.

Theorem 3 (Anti-Monotonicity). Let T be an in-
put trajectory, and let τ and the spatial neighborhood func-
tion N() be the parameters for the T-pattern mining prob-
lem. Then:

(x0, y0)
∆t1−→ . . .

∆tn+1
−→ (xn+1, yn+1) ≼N,τ T (2)

⇒ (x0, y0)
∆t1−→ . . .

∆tn−→ (xn, yn) ≼N,τ T (3)

⇒ (x0, y0)−→ . . .−→(xn, yn) ≼N T (4)

This property implies that the support of a T-pattern is
less than or equal to the support of any its prefixes, and thus

allows us to adopt a level-wise approach by mining step-by-
step patterns of increasing length. Moreover, it also states
that, in a similar way, transition times can be searched in a
separate step, after finding the interesting spatial points.

A critical aspect of this approach is the fact that at each
step we have in general an infinite number of possible points
to consider, e.g., the patterns in P0 correspond to all the
points that fall in any dense region of R2 w.r.t. the neigh-
borhood function. To deal with this problem, we introduce
an approximation of the basic method, where points are not
treated separately, but at each step are clustered together by
following the approach described in Section 4.2, to form ba-
sic regions that are treated as an indivisible entity. As in the
case of static RoI, the set of regions derived this way can be
used to translate trajectories to sequences composed of such
regions, which will be used to extend the actual pattern.

Notice that each occurrence of a region in the translated
sequence is associated with a time stamp, which is the time
stamp of the corresponding original point in the trajectory,
or, in case the trajectory was reconstructed through regres-
sion, the entry time of the trajectory in the region.

6.2.2 Implementation of the method
Exploiting the monotonicity property provided by Theo-

rem 3, we can safely search for any frequent pattern pn+1 =

(x0, y0)
∆t1−→ . . .

∆tn+1
−→ (xn+1, yn+1) by analyzing only the tra-

jectories that are already known to contain the subpattern

pn = (x0, y0)
∆t1−→ . . .

∆tn−→ (xn, yn). Moreover, only a seg-
ment of such trajectories really needs to be searched, since
we only need to find continuations of the pattern pn, and no
point occurring before the end time of pn can be appended
to pn to obtain pn+1. Therefore, any point occurring before
such end time can be removed from the trajectory. That
essentially means that we can follow a projection-based ap-
proach, as adopted by PrefixSpan [9] for sequential patterns
and by MiSTA [5] for frequent TAS’s.

The main difference from existing methods for mining se-
quential patterns or episodes is that our input data and the
projections obtained at each step will contain trajectories,
rather than sequences of events or itemsets. Then, at each
step we dynamically derive the interesting regions from the
trajectory segments of the actual projection, use such RoI
to translate the whole projection to a set of sequences of

Another problem: infinite number of possible points

Mining Trajectory Pattern Data Mining 2014/10

step-wise heuristic approach

• step by step: transition
times can be searched
in a separate step, after
finding the interesting
spatial points

(a) input trajectories (b) density distribution (c) dense cells and extracted RoI

Figure 4: Example of RoI extraction

From the discussion given above, we can easily deduce
that in a general setting the T-pattern mining problem be-
comes intractable even for small pattern lengths. That moti-
vates the development of simpler heuristic approaches, that
try to extract the same kind of information contained in
pure T-patterns but with some simplifying approximation.

6.2 A step-wise heuristic
The main issue in the general T-pattern mining problem

is that we need to consider density for space and transition
times in parallel, making it a high-dimensional problem.

Here a trade-off solution is provided, that approximates
the more general instantiations of the T-pattern problem,
by adopting a step-wise approach in building T-patterns,
and approximating sets of similar T-patterns by means of a
RoI-based representation.

6.2.1 Principles of the method
We start by observing that the set P0 of T-patterns of

length 1 for a dataset of trajectories T0 consists of all points
(x0, y0) over R2 that are dense w.r.t. the given neighbor-
hood function, i.e., all points that are touched or that fall
close to a sufficient number of the input trajectories.

In order to discover all patterns P1 of length 2, i.e., of the

form (x0, y0)
∆t1−→ (x1, y1), the general definition requires to

examine the occurrences of each input trajectory in the rep-
resentation space R5 looking for dense points, as discussed
in Section 6.1. However, that will yield patterns whose first
points, (x0, y0), are a subset of those found in P0, and, more
generally, any frequent T-pattern of length n + 1 is the ex-
tension of some frequent T-pattern of length n, as stated by
the following property.

Theorem 3 (Anti-Monotonicity). Let T be an in-
put trajectory, and let τ and the spatial neighborhood func-
tion N() be the parameters for the T-pattern mining prob-
lem. Then:

(x0, y0)
∆t1−→ . . .

∆tn+1
−→ (xn+1, yn+1) ≼N,τ T (2)

⇒ (x0, y0)
∆t1−→ . . .

∆tn−→ (xn, yn) ≼N,τ T (3)

⇒ (x0, y0)−→ . . .−→(xn, yn) ≼N T (4)

This property implies that the support of a T-pattern is
less than or equal to the support of any its prefixes, and thus

allows us to adopt a level-wise approach by mining step-by-
step patterns of increasing length. Moreover, it also states
that, in a similar way, transition times can be searched in a
separate step, after finding the interesting spatial points.

A critical aspect of this approach is the fact that at each
step we have in general an infinite number of possible points
to consider, e.g., the patterns in P0 correspond to all the
points that fall in any dense region of R2 w.r.t. the neigh-
borhood function. To deal with this problem, we introduce
an approximation of the basic method, where points are not
treated separately, but at each step are clustered together by
following the approach described in Section 4.2, to form ba-
sic regions that are treated as an indivisible entity. As in the
case of static RoI, the set of regions derived this way can be
used to translate trajectories to sequences composed of such
regions, which will be used to extend the actual pattern.

Notice that each occurrence of a region in the translated
sequence is associated with a time stamp, which is the time
stamp of the corresponding original point in the trajectory,
or, in case the trajectory was reconstructed through regres-
sion, the entry time of the trajectory in the region.

6.2.2 Implementation of the method
Exploiting the monotonicity property provided by Theo-

rem 3, we can safely search for any frequent pattern pn+1 =

(x0, y0)
∆t1−→ . . .

∆tn+1
−→ (xn+1, yn+1) by analyzing only the tra-

jectories that are already known to contain the subpattern

pn = (x0, y0)
∆t1−→ . . .

∆tn−→ (xn, yn). Moreover, only a seg-
ment of such trajectories really needs to be searched, since
we only need to find continuations of the pattern pn, and no
point occurring before the end time of pn can be appended
to pn to obtain pn+1. Therefore, any point occurring before
such end time can be removed from the trajectory. That
essentially means that we can follow a projection-based ap-
proach, as adopted by PrefixSpan [9] for sequential patterns
and by MiSTA [5] for frequent TAS’s.

The main difference from existing methods for mining se-
quential patterns or episodes is that our input data and the
projections obtained at each step will contain trajectories,
rather than sequences of events or itemsets. Then, at each
step we dynamically derive the interesting regions from the
trajectory segments of the actual projection, use such RoI
to translate the whole projection to a set of sequences of

Another problem: infinite number of possible points

• The same like to find SoI: points are not treated separately, but at
each step are clustered together by following the approach used in
finding SoI.

Mining Trajectory Pattern Data Mining 2014/10

Summary

• Trajectory VS Sequence
• the former have time information

• Mining Trajectory Pattern VS Mining Sequence Pattern
• add the time information(constrain)

• The idea of PrefixSpan

• The idea of generating RoI

Q&A

