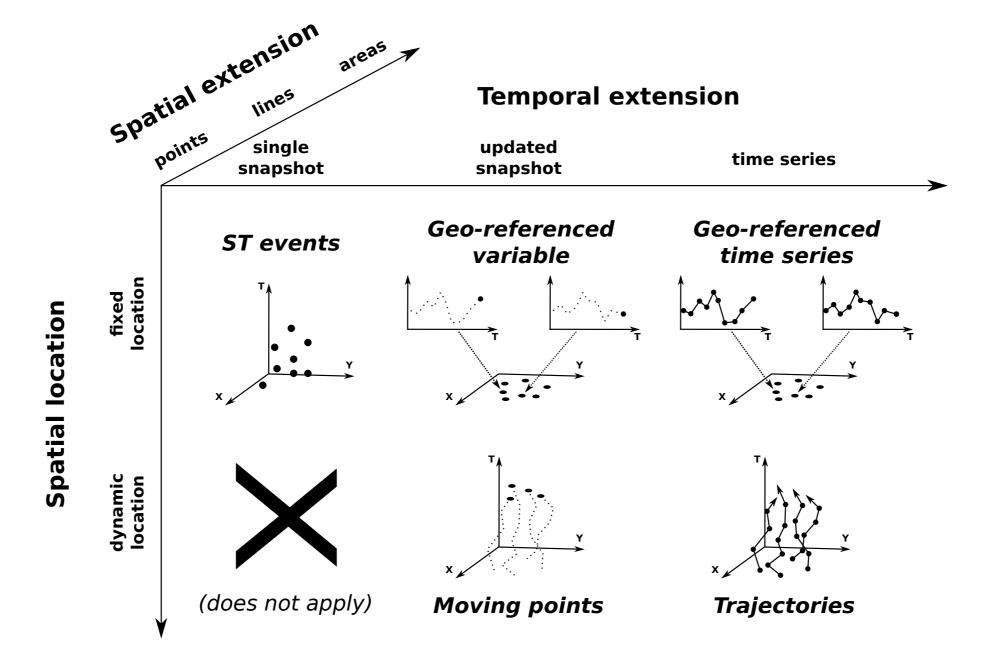
Trajectory Pattern Mining

Figures and charts are from some materials downloaded from the internet.

- Spatio-temporal data types
- Mining trajectory patterns

Spatio-temporal data types

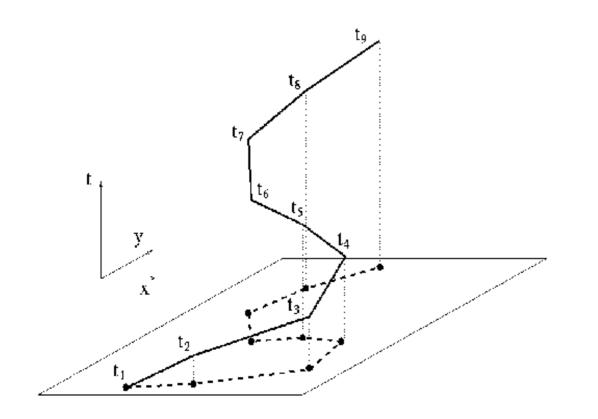


Mining Trajectory Pattern

Trajectory data

• **Spatio-temporal** Data

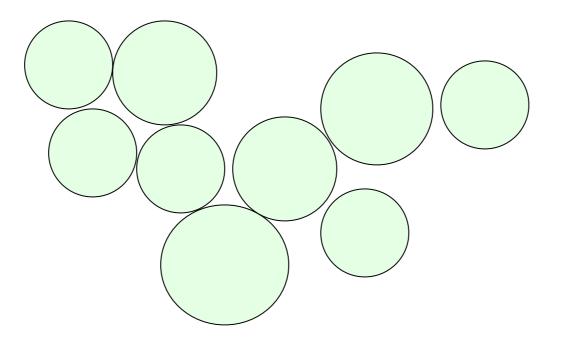
- Represented as a set of points, located in space and time
- T=(x1,y1, t1), ..., (xn, yn, tn) => position in space at time ti was (xi,yi)



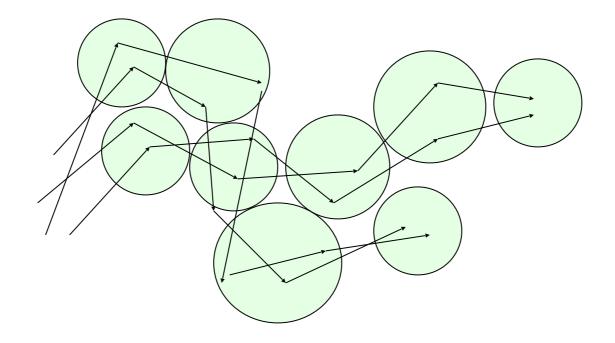
Tid	posit	ion (x,y)	time (t)
1	48.890018	2.246100	08:25
1	48.890018	2.246100	08:26
1	48.890020	2.246102	08:40
1	48.888880	2.248208	08:41
1	48.885732	2.255031	08:42
1	48.858434	2.336105	09:04
1	48.853611	2.349190	09:05
2			

Mining Trajectory Pattern

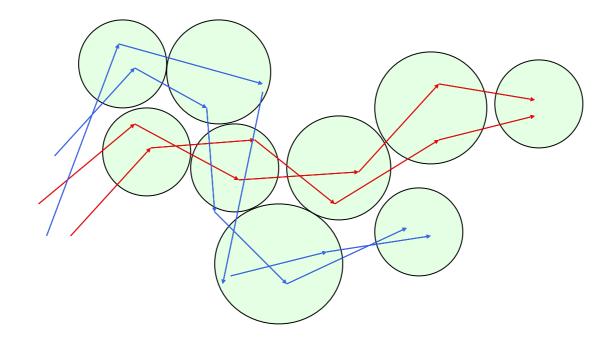
- Group together similar trajectories
- Analyze the each group



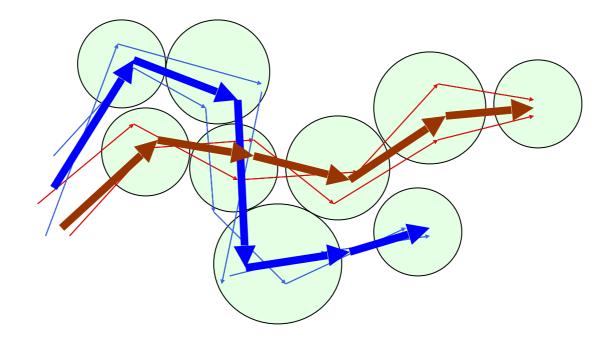
- Group together similar trajectories
- Analyze the each group



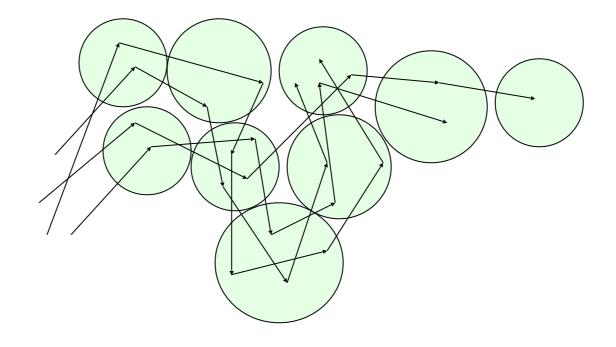
- Group together similar trajectories
- Analyze the each group



- Group together similar trajectories
- Analyze the each group

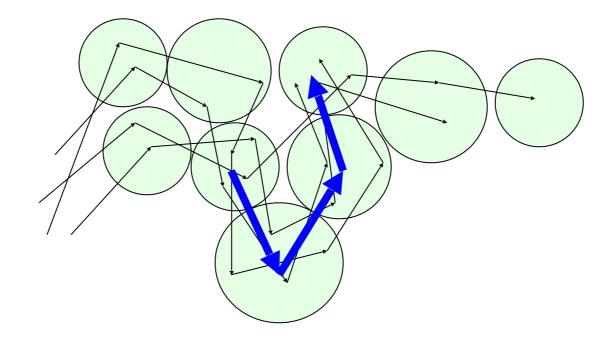


- Frequent trajectory pattern mining
- The sub-trajectory that frequently appeared in the trajectories
- Consider both place and time



Mining Trajectory Pattern

- Frequent trajectory pattern mining
- The sub-trajectory that frequently appeared in the trajectories
- Consider both place and time



Mining Trajectory Pattern

Trajectory Pattern Mining

Fosca Giannotti, etc. 2007

trajectory vs sequence

• **Purpose**: find the frequent trajectory in the dataset.

trajectory vs sequence

- **Purpose**: find the frequent trajectory in the dataset.
 - Difference Compared with Traditional Sequence: **TIME**

trajectory vs sequence

- **Purpose**: find the frequent trajectory in the dataset.
 - Difference Compared with Traditional Sequence: **TIME**
- Temporally Annotated Sequences(TAS)
- sequences with transition times between their elements

$$T = s_0 \xrightarrow{\alpha_1} s_1 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_n} s_n$$

• represented as a couple T = (S, A) of a sequence S = $\langle so,...,sn \rangle$ with temporal annotations A = $\langle \alpha 1,...,\alpha n \rangle$.

Frequent sequences in TAS vs Frequent sequence in sequence

contain of Sequence

- $\alpha \subseteq \beta$, if there exist integers $1 \le j1 < j2 < ... < jn \le m$ such that $a1 \subseteq bj1$, $a2 \subseteq bj2$,..., $an \subseteq bjn$.
- Example:
- $\beta = \langle a(abc)(ac)d(cf) \rangle$
- $\alpha 1 = \langle aa(ac)d(c) \rangle$ yes
- α2=<(ac)(ac)d(cf)> yes
- α 3=<ac> yes
- $\alpha 4 = \langle df(cf) \rangle$ no

contain of TAS

Definition 1. (τ -containment (\leq_{τ})) Given a time threshold τ , a $TAS \ T = s_0 \xrightarrow{\alpha_1} \cdots \xrightarrow{\alpha_n} s_n$ is τ -contained (or occurs) in an input sequence $I = \langle (I_0, t_0), \ldots, (I_m, t_m) \rangle$, denoted as $T \leq_{\tau} I$, if and only if there exists a sequence of integers $0 \leq i_0 < \cdots < i_n \leq m$ such that:

1. $\forall_{0 \leq k \leq n} . s_k \subseteq I_{i_k}$ 2. $\forall_{1 \leq k \leq n} . |\alpha_k - \alpha'_k| \leq \tau$

where $\forall_{1 \leq k \leq n}$. $\alpha'_k = t_{i_k} - t_{i_{k-1}}$.

• Example:

$$T: \{a\} \xrightarrow{4} \{b\} \xrightarrow{9} \{c\}$$

$$I: \{(a)\}, 0 \longrightarrow \{(b), d\}, 3 \longrightarrow \{f\}, 10 \longrightarrow \{(c)\}, 14$$

$$3 \xrightarrow{14-3=11}$$

Frequent sequences in TAS vs Frequent sequence in sequence

contain of Sequence

- $\alpha \subseteq \beta$, if there exist integers $1 \le j1 < j2 < ... < jn \le m$ such that $a1 \subseteq bj1$, $a2 \subseteq bj2$,..., $an \subseteq bjn$.
- Example:
- $\beta = \langle a(abc)(ac)d(cf) \rangle$
- $\alpha 1 = \langle aa(ac)d(c) \rangle$ yes
- $\alpha_2 = \langle (ac)(ac)d(cf) \rangle$ yes
- α3=<ac> yes
- $\alpha 4 = \langle df(cf) \rangle$ no

contain of TAS

Definition 1. (τ -containment (\preceq_{τ})) Given a time threshold τ , a $TAS \ T = s_0 \xrightarrow{\alpha_1} \cdots \xrightarrow{\alpha_n} s_n$ is τ -contained (or occurs) in an input sequence $I = \langle (I_0, t_0), \ldots, (I_m, t_m) \rangle$, denoted as $T \preceq_{\tau} I$, if and only if there exists a sequence of integers $0 \leq i_0 < \cdots < i_n \leq m$ such that:

1. $\forall_{0 \leq k \leq n} . s_k \subseteq I_{i_k}$ 2. $\forall_{1 \leq k \leq n} . |\alpha_k - \alpha'_k| \leq \tau$

where $\forall_{1 \leq k \leq n}$. $\alpha'_k = t_{i_k} - t_{i_{k-1}}$.

• Example:

$$T: \{a\} \xrightarrow{4} \{b\} \xrightarrow{9} \{c\}$$
$$I: \{(a)\}, 0 \longrightarrow \{(b), d\}, 3 \longrightarrow \{f\}, 10 \longrightarrow \{(c)\}, 14$$
$$3 \xrightarrow{14-3=11}$$

Generalize the concept of contain with neighbourhood

Mining Trajectory Pattern

Data Mining

2014/10

Problem statement

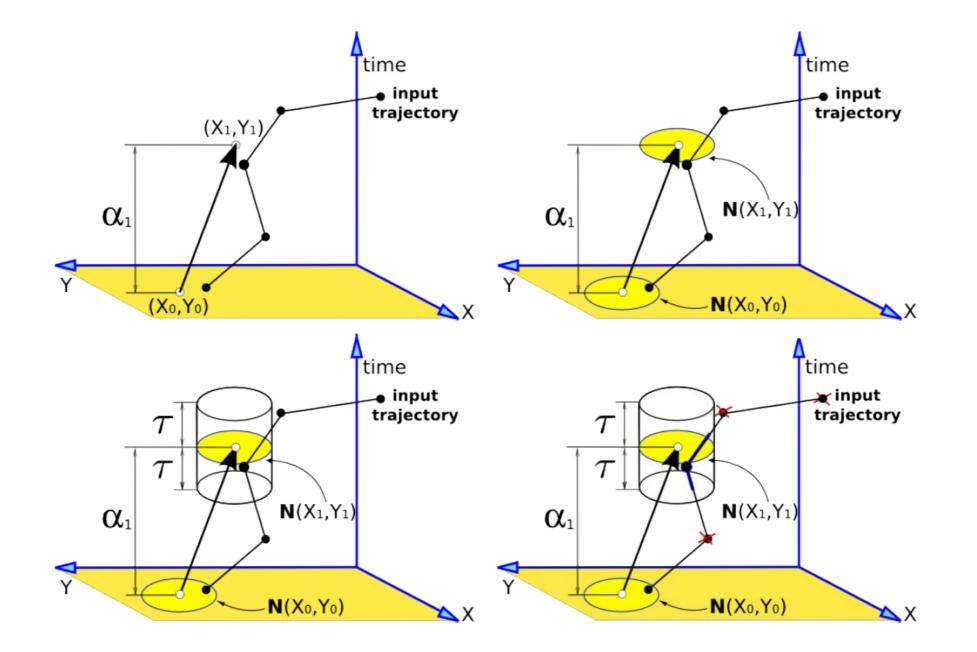
Definition 3. (Spatial containment, \leq_N) Given a sequence of spatial points $S = \langle (x_0, y_0), \ldots, (x_k, y_k) \rangle$, a spatio-temporal sequence $T = \langle (x'_0, y'_0, t'_0), \ldots, (x'_n, y'_n, t'_n) \rangle$ and a neighborhood function $N : \mathbb{R}^2 \to \mathcal{P}(\mathbb{R}^2)$, we say that S is contained in T ($S \leq_N T$, or simply $S \leq T$, when N is clear from context) if and only if there exists a sequence of integers $0 \leq$ $i_0 < \cdots < i_k \leq n$ such that: $\forall_{0 \leq j \leq k} . (x_j, y_j) \in N(x'_{i_j}, y'_{i_j})$.

Definition 5. (Spatio-temporal containment, $\preceq_{N,\tau}$) Given a spatio-temporal sequence T, time tolerance τ , a neighborhood function $N : \mathbb{R}^2 \to \mathcal{P}(\mathbb{R}^2)$ and a T-pattern $(S, A) = (x_0, y_0) \xrightarrow{\alpha_1} (x_1, y_1) \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_k} (x_k, y_k)$, we say that (S, A) is contained in T ($(S, A) \preceq_{N,\tau} T$, or simply $(S, A) \preceq T$, when clear from context) if and only if there exists a subsequence T' of $T, T' = \langle (x'_0, y'_0, t'_0), \ldots, (x'_k, y'_k, t'_k) \rangle$ such that:

- 1. $S \leq_N T'$, and
- 2. $\forall_{1 \leq j \leq k}$. $|\alpha_j \alpha'_j| \leq \tau$

where $\alpha'_{j} = t'_{j} - t'_{j-1}$.

Illustration of patio-temporal containment



Mining Trajectory Pattern

Mining trajectory patterns with different N()

• different approaches correspond to a different choice of the neighborhood function N(x,y).

- RoI: (1) known RoI; (2) unknown RoI.
- Generalized N(x,y)

Mining trajectory patterns with known Rol

• Add the information of time into <u>PrefixSpan</u> — mining TAS

"Efficient mining of sequences with temporal annotations. In Proc. SIAM Conference on Data Mining, pages 346–357. SIAM, 2006."

Mining Trajectory Pattern

PrefixSpan

- <u>PrefixSpan</u>: mining frequent sequences based on prefix-projection
- Sequence β is called a prefix of α iff:
- (1)bi= ai for i \leq m-1; (2) bm \subseteq am.
- A subsequence α ' of sequence α is called a projection of α w.r.t. β prefix iff:(1) α ' has prefix β ; (2) There exist no proper super-sequence α " of α ' such that α " is a subsequence of α and also has prefix β .

- e.g. $\alpha = \langle a(abc)(ac)d(cf) \rangle$
- $\beta = \langle a(abc)a \rangle$

- **e.g.** $\alpha = \langle a(abc)(ac)d(cf) \rangle$
- $\beta = <(bc)a>$
- $\alpha' = \langle (bc)(ac)d(cf) \rangle$

 The fundamental idea is that any pattern starting with a can be obtained by analyzing only D|a (projection of the initial dataset D on a), which in general is much smaller than D.

"J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001."

Mining Trajectory Pattern

• Step one: Find length1 sequential patterns

id	Sequence
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>
20	<(ad)c(bc)(ae)>
30	<(ef)(ab)(df)cb>
40	<eg(af)cbc></eg(af)cbc>

• Step two: Divide search space

• Step three: Find subsets of sequential patterns

"J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001."

Mining Trajectory Pattern

• Step one: Find length1 sequential patterns

	Sequence	<a>		<c></c>	<d></d>	<e></e>	<f:< th=""></f:<>
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>	4	4	4	3	3	3
)	<(ad)c(bc)(ae)>	7	7	7	0	0	0
)	<(ef)(ab)(df)cb>						
0	<eg(af)cbc></eg(af)cbc>						

• Step two: Divide search space

• Step three: Find subsets of sequential patterns

"J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001."

Mining Trajectory Pattern

• Step one: Find length1 sequential patterns

id	Sequence	<a>		<c></c>	<d></d>	<e></e>	<f></f>
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>	4	4	4	3	3	3
20	<(ad)c(bc)(ae)>	4	7	7	0	0	0
30	<(ef)(ab)(df)cb>		<	a≫h	> <c></c>	<d><</d>	′e> <f< td=""></f<>
	<eg(af)cbc></eg(af)cbc>			u> \D	~ \02	Su 2 S	

• Step two: Divide search space

• Step three: Find subsets of sequential patterns

"J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001."

Mining Trajectory Pattern

• Step one: Find length1 sequential patterns

d	Sequence	<a>		<c></c>	<d></d>	<e></e>	<f></f>
0	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>	4	4	4	3	3	3
20	<(ad)c(bc)(ae)>	-	-	-	U	U	U
)	<(ef)(ab)(df)cb>		<	a> <h< th=""><th>><c></c></th><th><d><</d></th><th>~e>~f</th></h<>	> <c></c>	<d><</d>	~e>~f
)	<eg(af)cbc></eg(af)cbc>			u> \D	~ \02	-u	

• Step two: Divide search space

Prefix

• Step three: Find subsets of sequential patterns

"J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001."

Mining Trajectory Pattern

• Step one: Find length1 sequential patterns

id	Sequence	<a>		<c></c>	<d></d>	<e></e>	<f></f>	
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>	4	4	4	3	3	3	
20	<(ad)c(bc)(ae)>		-		U	U	U	
0	<(ef)(ab)(df)cb>		<	a>~h	> 0>	<d><</d>	:e> <f:< th=""><th>></th></f:<>	>
0	<eg(af)cbc></eg(af)cbc>							

• Step two: Divide search space

• Step three: Find subsets of sequential patterns

"J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001."

Mining Trajectory Pattern

• Step one: Find length1 sequential patterns

id	Sequence	<a>		<c></c>	<d></d>	<e></e>	<f></f>	
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>	4	4	4	3	3	3	
20	<(ad)c(bc)(ae)>		-	-	U	U	U	
30	<(ef)(ab)(df)cb>		<	a> <h< th=""><th>> 0></th><th><d><</d></th><th>:e><f:< th=""><th>></th></f:<></th></h<>	> 0>	<d><</d>	:e> <f:< th=""><th>></th></f:<>	>
40	<eg(af)cbc></eg(af)cbc>							

• Step two: Divide search space



• Step three: Find subsets of sequential patterns

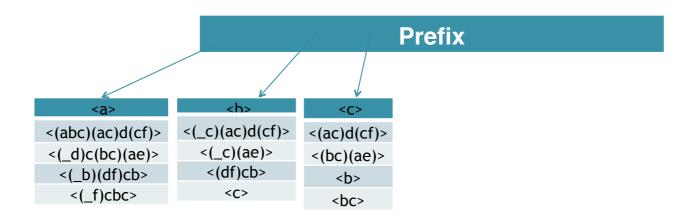
"J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001."

Mining Trajectory Pattern

• Step one: Find length1 sequential patterns

d	Sequence	<a>		<c></c>	<d></d>	<e></e>	<f></f>
0	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>	4	4	4	3	3	3
)	<(ad)c(bc)(ae)>	-	7	-	0	U	U
	<(ef)(ab)(df)cb>		<	′a∽h	>	<d><</d>	e> <f< th=""></f<>
	<eg(af)cbc></eg(af)cbc>				- 102		

• Step two: Divide search space



• Step three: Find subsets of sequential patterns

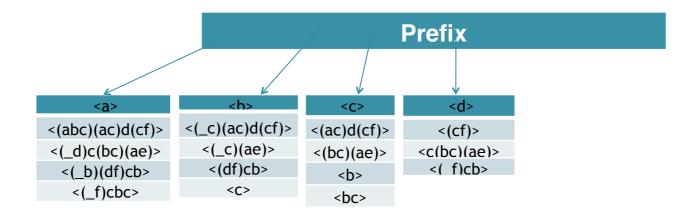
"J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001."

Mining Trajectory Pattern

• Step one: Find length1 sequential patterns

id	Sequence	<a>		<c></c>	<d></d>	<e></e>	<f></f>
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>	4	4	4	3	3	3
.0	<(ad)c(bc)(ae)>	-	7	-	U	U	0
	<(ef)(ab)(df)cb>		<	a≫h	>	<d><</d>	e>~f
	<eg(af)cbc></eg(af)cbc>						

• Step two: Divide search space



• Step three: Find subsets of sequential patterns

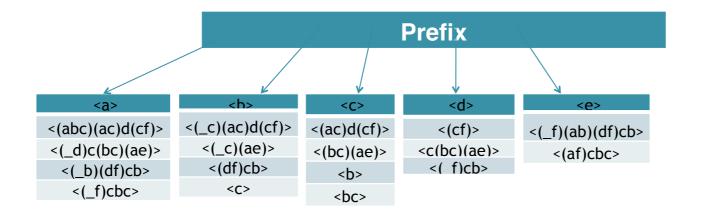
"J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001."

Mining Trajectory Pattern

• Step one: Find length1 sequential patterns

id	Sequence	<a>		<c></c>	<d></d>	<e></e>	<f></f>	
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>	4	4	4	3	3	3	
20	<(ad)c(bc)(ae)>		-	-	U	U	U	
)	<(ef)(ab)(df)cb>		<	a> <h< th=""><th>></th><th><d><</d></th><th>′e≻∕f</th><td>></td></h<>	>	<d><</d>	′e≻∕f	>
0	<eg(af)cbc></eg(af)cbc>							

• Step two: Divide search space



• Step three: Find subsets of sequential patterns

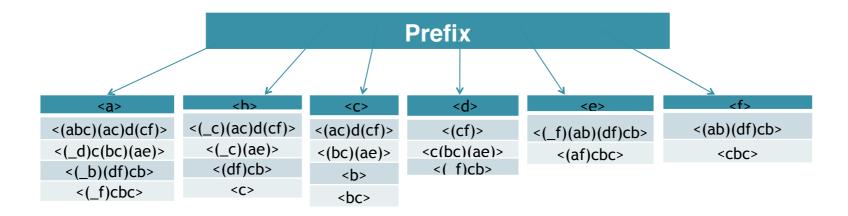
"J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001."

Mining Trajectory Pattern

• Step one: Find length1 sequential patterns

id	Sequence	<a>		<c></c>	<d></d>	<e></e>	<f></f>	
0	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>	4	4	4	3	3	3	
20	<(ad)c(bc)(ae)>	-	-		U	U	U	
0	<(ef)(ab)(df)cb>		<	′a∽ch	>	<d><</d>	:e> <f< td=""><th>></th></f<>	>
	<eg(af)cbc></eg(af)cbc>				- 102			

• Step two: Divide search space



• Step three: Find subsets of sequential patterns

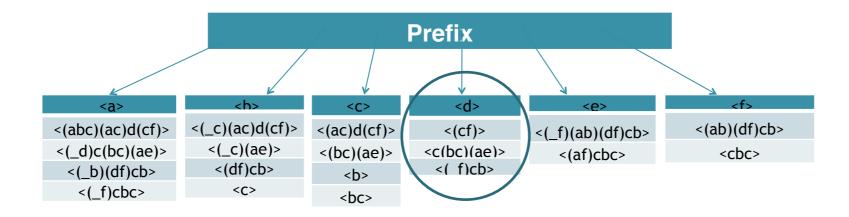
"J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001."

Mining Trajectory Pattern

• Step one: Find length1 sequential patterns

id	Sequence	<a>		<c></c>	<d></d>	<e></e>	<f></f>	
0	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>	4	4	4	3	3	3	
20	<(ad)c(bc)(ae)>	-	-		U	U	U	
0	<(ef)(ab)(df)cb>		<	′a∽ch	>	<d><</d>	:e> <f< td=""><th>></th></f<>	>
	<eg(af)cbc></eg(af)cbc>				- 102			

• Step two: Divide search space



• Step three: Find subsets of sequential patterns

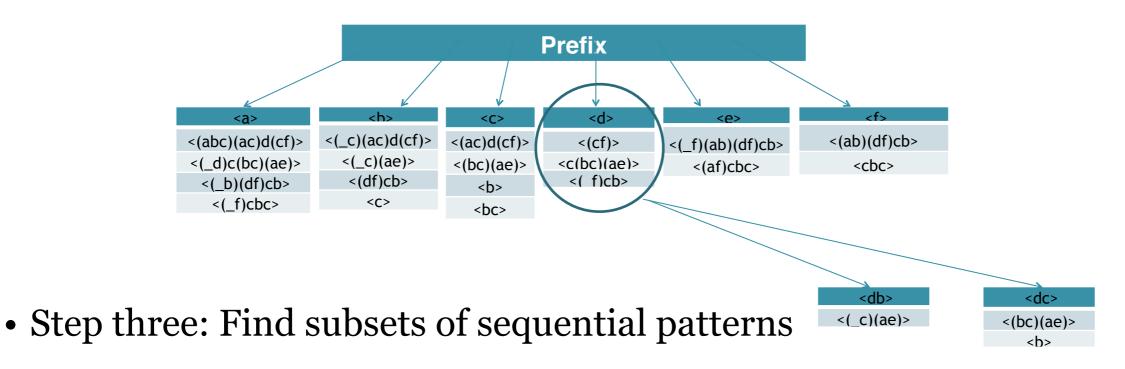
"J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001."

Mining Trajectory Pattern

• Step one: Find length1 sequential patterns

id	Sequence	<a>		<c></c>	<d></d>	<e></e>	<f></f>		
0	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>	4	4	4	3	3	3		
.0	<(ad)c(bc)(ae)>		-	-	U	U	U		
)	<(ef)(ab)(df)cb>	<a>c><d><e><f></f></e></d>							
	<eg(af)cbc></eg(af)cbc>				- 10-				

• Step two: Divide search space



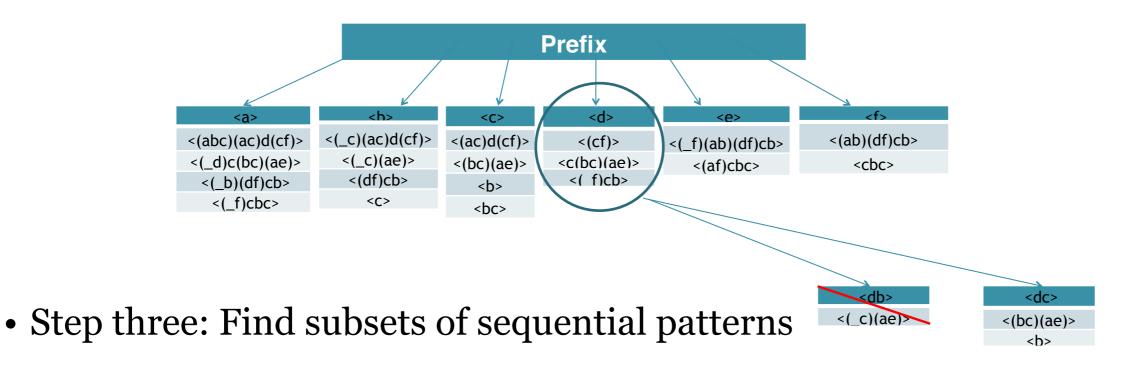
"J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001."

Mining Trajectory Pattern

• Step one: Find length1 sequential patterns

id	Sequence	<a>		<c></c>	<d></d>	<e></e>	<f></f>		
10	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>	4	4	4	3	3	3		
	<(ad)c(bc)(ae)>	4	-	-	0	U	U		
	<(ef)(ab)(df)cb>	<a>c><d><e><f></f></e></d>							
< 6	g(af)cbc>				- 10-				

• Step two: Divide search space



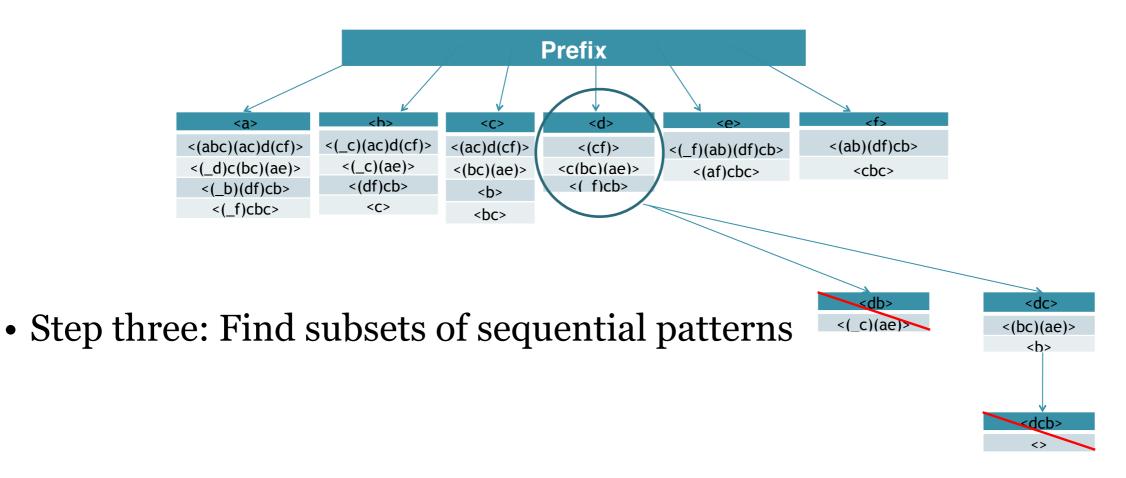
"J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001."

Mining Trajectory Pattern

• Step one: Find length1 sequential patterns

d	Sequence	<a>		<c></c>	<d></d>	<e></e>	<f></f>			
0	<a(abc)(ac)d(cf)></a(abc)(ac)d(cf)>	4	4	4	3	3	3	١		
0	<(ad)c(bc)(ae)>		-	-	0	0	U			
)	<(ef)(ab)(df)cb>	<a>c><d><e><f></f></e></d>								
	<eg(af)cbc></eg(af)cbc>									

• Step two: Divide search space



"J. Pei et al. Prefixspan: Mining sequential patterns by prefix-projected growth. In ICDE, 2001."

Mining Trajectory Pattern

Data Mining

2014/10

Mining trajectory patterns with known Rol

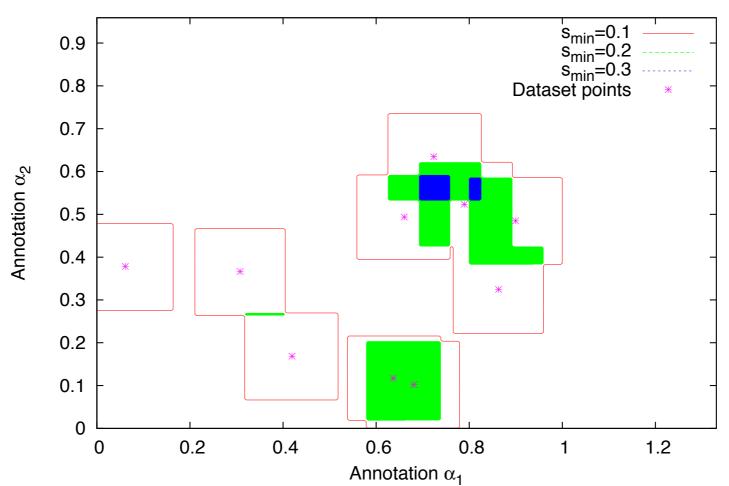
- Add **time** into <u>PrefixSpan</u> mining TAS
- Expand the prefix with the limitation of the time dimension

"Efficient mining of sequences with temporal annotations. In Proc. SIAM Conference on Data Mining, pages 346–357. SIAM, 2006."

Mining Trajectory Pattern

Mining trajectory patterns with known Rol

- Add **time** into <u>PrefixSpan</u> mining TAS
- Expand the prefix with the limitation of the time dimension



Frequent annotations for pattern $a \rightarrow b \rightarrow c$

"Efficient mining of sequences with temporal annotations. In Proc. SIAM Conference on Data Mining, pages 346–357. SIAM, 2006."

Mining Trajectory Pattern

Data Mining

2014/10

Mining trajectory patterns with unknown Rol

- Construct RoI
- Use the previous algorithm

Mining Trajectory Pattern

Construct Rol (1)

- Split space into n x m grid with small cells
- Increment cells where trajectory passes
- Neighborhood Function NR() determines which surrounding cells
- Regression increment continuously along trajectory

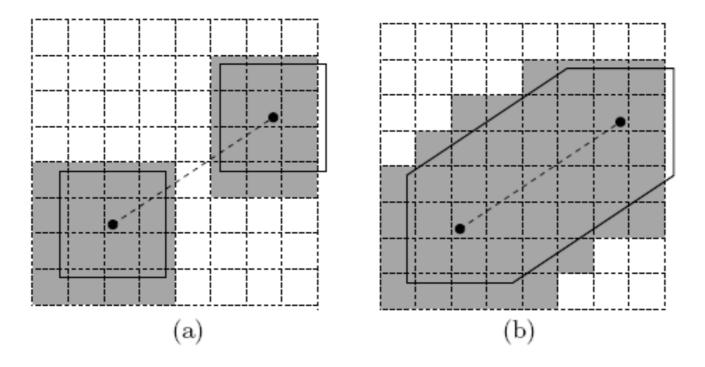


Figure 2: Density with and without regression

Mining Trajectory Pattern

Construct Rol (2)

- Iteratively consider each dense cell
 - Expands in all four directions
 - Select expansion that maximizes density
 - Repeat until expansion would decrease below density threshold

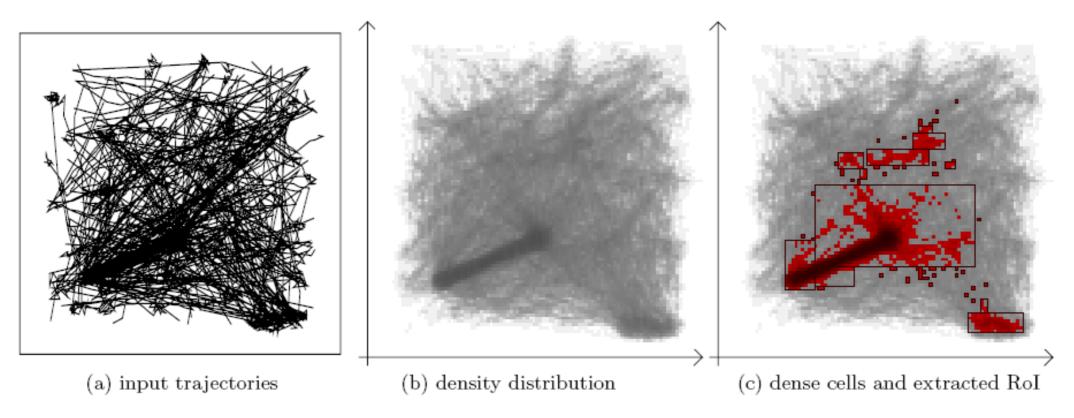


Figure 4: Example of RoI extraction

Mining Trajectory Pattern

Mining trajectory patterns with R(N)

- In principle, we need to search all-sequences of each trajectory to see if it contains a T-pattern in order to decide if it is a frequent pattern
- A T- pattern matches an input ST-sequence T when it falls in the neighborhood of any of its subsequences, which is equivalent to say that it falls in the union of the neighborhoods of all possible subsequences of T, that for convenience we will call the neighborhood of T
- frequent T-patterns are those that fall in the neighborhood of several input ST- sequences
- a density-estimation problem where we look for dense points in a space that represents T-patterns by means of tuples of points plus corresponding (n 1)-ples of transition times

Mining Trajectory Pattern

Data Mining

2014/10

Mining trajectory patterns with R(N)

- In principle, we need to search all-sequences of each trajectory to see if it contains a T-pattern in order to decide if it is a frequent pattern
- A T- pattern matches an input ST-sequence T when it falls in the neighborhood of any of its subsequences, which is equivalent to say that it falls in the union of the neighborhoods of all possible subsequences of T, that for convenience we will call the neighborhood of T
- frequent T-patterns are those that fall in the neighborhood of several input ST- sequences
- a density-estimation problem where we look for dense points in a space that represents T-patterns by means of tuples of points plus corresponding (n 1)-ples of transition times

However, the dimension grows rapidly

Mining Trajectory Pattern

Data Mining

2014/10

step-wise heuristic approach

 step by step: transition times can be searched in a separate step, after finding the interesting spatial points

THEOREM 3 (ANTI-MONOTONICITY). Let T be an input trajectory, and let τ and the spatial neighborhood function N() be the parameters for the T-pattern mining problem. Then:

$$(x_0, y_0) \xrightarrow{\Delta t_1} \dots \xrightarrow{\Delta t_{n+1}} (x_{n+1}, y_{n+1}) \preceq_{N,\tau} T \qquad (2)$$

$$\Rightarrow \qquad (x_0, y_0) \xrightarrow{\Delta t_1} \dots \xrightarrow{\Delta t_n} (x_n, y_n) \preceq_{N,\tau} T \qquad (3)$$

$$\Rightarrow \qquad (x_0, y_0) \longrightarrow \ldots \longrightarrow (x_n, y_n) \preceq_N T \qquad (4)$$

step-wise heuristic approach

 step by step: transition times can be searched in a separate step, after finding the interesting spatial points

THEOREM 3 (ANTI-MONOTONICITY). Let T be an input trajectory, and let τ and the spatial neighborhood function N() be the parameters for the T-pattern mining problem. Then:

$$(x_0, y_0) \xrightarrow{\Delta t_1} \dots \xrightarrow{\Delta t_{n+1}} (x_{n+1}, y_{n+1}) \preceq_{N,\tau} T \qquad (2)$$

$$\Rightarrow \qquad (x_0, y_0) \xrightarrow{\Delta t_1} \dots \xrightarrow{\Delta t_n} (x_n, y_n) \preceq_{N,\tau} T \qquad (3)$$

$$\Rightarrow \qquad (x_0, y_0) \longrightarrow \ldots \longrightarrow (x_n, y_n) \preceq_N T \tag{4}$$

Another problem: infinite number of possible points

Mining Trajectory Pattern

Data Mining

2014/10

step-wise heuristic approach

 step by step: transition times can be searched in a separate step, after finding the interesting spatial points

THEOREM 3 (ANTI-MONOTONICITY). Let T be an input trajectory, and let τ and the spatial neighborhood function N() be the parameters for the T-pattern mining problem. Then:

$$(x_0, y_0) \xrightarrow{\Delta t_1} \dots \xrightarrow{\Delta t_{n+1}} (x_{n+1}, y_{n+1}) \preceq_{N,\tau} T \qquad (2)$$

$$\Rightarrow \qquad (x_0, y_0) \xrightarrow{\Delta t_1} \dots \xrightarrow{\Delta t_n} (x_n, y_n) \preceq_{N,\tau} T \qquad (3)$$

$$\Rightarrow \qquad (x_0, y_0) \longrightarrow \ldots \longrightarrow (x_n, y_n) \preceq_N T \tag{4}$$

Another problem: infinite number of possible points

• The same like to find SoI: points are not treated separately, but at each step are clustered together by following the approach used in finding SoI.

Mining Trajectory Pattern

Data Mining

2014/10

Summary

- <u>Trajectory VS Sequence</u>
 - the former have time information
- <u>Mining Trajectory Pattern VS Mining Sequence Pattern</u>
 - add the time information(constrain)
- The idea of PrefixSpan
- The idea of generating RoI

Mining Trajectory Pattern

Q&A